
Efficient Generation of C Code from CCSL 1 / 21

Efficient Generation of C Code from CCSL

Baptiste Allorant

ENS de Lyon, INRIA Sophia-Antipolis
under the supervision of Frédéric Mallet and Sid Touati

25 November 2021



Efficient Generation of C Code from CCSL 2 / 21

Context and Motivation

General Presentation of CCSL

Presentation of CCSL

Figure 1: LightCCSL Example



Efficient Generation of C Code from CCSL 3 / 21

Context and Motivation

General Presentation of CCSL

Semantic of CCSL

Figure 2: Union and Intersection of Clocks in CCSL



Efficient Generation of C Code from CCSL 4 / 21

Context and Motivation

Solving Strategies

Solving Strategies

▶ Compute the state automaton of the specification.

▶ Use a SAT-Solver at each tick to compute the next tick.
Is it possible to do better?
The goal is to generate C code from a CCSL specification that will
efficiently compute one solution to the specification.



Efficient Generation of C Code from CCSL 4 / 21

Context and Motivation

Solving Strategies

Solving Strategies

▶ Compute the state automaton of the specification.
▶ Use a SAT-Solver at each tick to compute the next tick.

Is it possible to do better?
The goal is to generate C code from a CCSL specification that will
efficiently compute one solution to the specification.



Efficient Generation of C Code from CCSL 4 / 21

Context and Motivation

Solving Strategies

Solving Strategies

▶ Compute the state automaton of the specification.
▶ Use a SAT-Solver at each tick to compute the next tick.

Is it possible to do better?

The goal is to generate C code from a CCSL specification that will
efficiently compute one solution to the specification.



Efficient Generation of C Code from CCSL 4 / 21

Context and Motivation

Solving Strategies

Solving Strategies

▶ Compute the state automaton of the specification.
▶ Use a SAT-Solver at each tick to compute the next tick.

Is it possible to do better?
The goal is to generate C code from a CCSL specification that will
efficiently compute one solution to the specification.



Efficient Generation of C Code from CCSL 5 / 21

Determined Components

Definition

Looking for possible Precomputations

Let C and D be a determined components.

Repeat a Every k b : (a ∈ C ∧ b ∈ D) → C = D
a = Def (b, c) : (b ∈ D ∧ c ∈ D) → a ∈ D

Figure 3: Clocks in Determined Components.



Efficient Generation of C Code from CCSL 5 / 21

Determined Components

Definition

Looking for possible Precomputations

Let C and D be a determined components.

Repeat a Every k b : (a ∈ C ∧ b ∈ D) → C = D
a = Def (b, c) : (b ∈ D ∧ c ∈ D) → a ∈ D

Figure 3: Clocks in Determined Components.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.

– Union-Find.

▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.

– Union-Find.
▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.

– Union-Find.

▶ Implication.

– Implication Graph.
▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.

– Union-Find.

▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.
▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.

– Union-Find.

▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.
– Union-Find.

▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.
– Union-Find.

▶ Implication.
– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.
– Union-Find.

▶ Implication.
– Implication Graph.

▶ Exclusion.
– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.



Efficient Generation of C Code from CCSL 6 / 21

Representation of the Problem

Stateless Constraints

Stateless Constraints

▶ Not, Equivalence.
– Union-Find.

▶ Implication.
– Implication Graph.

▶ Exclusion.
– Separation of A and ¬A.

▶ Union, Intersection, Minus.
– No simple Implication translation.



Efficient Generation of C Code from CCSL 7 / 21

Representation of the Problem

Stateless Constraints

Union Case

a = b or c ⇒
b → a
c → a

a → ¬b → c
¬b → a → c
¬c → a → b



Efficient Generation of C Code from CCSL 7 / 21

Representation of the Problem

Stateless Constraints

Union Case

a = b or c ⇒
b → a
c → a
a → ¬b → c
¬b → a → c
¬c → a → b



Efficient Generation of C Code from CCSL 8 / 21

Representation of the Problem

General Issue

Main Issue

a ¬a

b

c ¬c

Figure 4: Main Issue



Efficient Generation of C Code from CCSL 9 / 21

Representation of the Problem

General Issue

Issue from Union

d = a ∨ b

a ¬a

b

c ¬c

Figure 5: Union Issue



Efficient Generation of C Code from CCSL 10 / 21

Representation of the Problem

General Issue

Issue from Minus

a = d− b ¬a

b¬b

c ¬c

d

Figure 6: Minus Issue



Efficient Generation of C Code from CCSL 11 / 21

Representation of the Problem

The Order Approach

The Order Approach

a b c d

x = a ∨ b y = c ∨ d

Figure 7: Order Counter-Example



Efficient Generation of C Code from CCSL 11 / 21

Representation of the Problem

The Order Approach

The Order Approach

a b c d

x = a ∨ b y = c ∨ d

Figure 7: Order Counter-Example



Efficient Generation of C Code from CCSL 12 / 21

Representation of the Problem

The Backtrack Approach

The Backtrack Approach

a ¬a

b

c ¬c

Figure 8: Basic Issue



Efficient Generation of C Code from CCSL 13 / 21

Representation of the Problem

The Backtrack Approach

The Backtrack Approach

a

¬db

c ¬c

e

¬a

Figure 9: Backtrack Issue



Efficient Generation of C Code from CCSL 14 / 21

Proof of NP-Completeness

Proof of NP-Completeness

Definition (Single-Step CCSL)
Let S be a CCSL specification, n ∈ N, and T a valid schedule of S
for the n first steps. Single-Step CCSL is defined as the problem of
computing a valid n + 1th step.

Theorem
Single-Step CCSL is NP-Complete.

Proof.
Not detailed here.



Efficient Generation of C Code from CCSL 14 / 21

Proof of NP-Completeness

Proof of NP-Completeness

Definition (Single-Step CCSL)
Let S be a CCSL specification, n ∈ N, and T a valid schedule of S
for the n first steps. Single-Step CCSL is defined as the problem of
computing a valid n + 1th step.

Theorem
Single-Step CCSL is NP-Complete.

Proof.
Not detailed here.



Efficient Generation of C Code from CCSL 14 / 21

Proof of NP-Completeness

Proof of NP-Completeness

Definition (Single-Step CCSL)
Let S be a CCSL specification, n ∈ N, and T a valid schedule of S
for the n first steps. Single-Step CCSL is defined as the problem of
computing a valid n + 1th step.

Theorem
Single-Step CCSL is NP-Complete.

Proof.
Not detailed here.



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.
3. Using many orders increases the size of the minimum

counter-example.
The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.

2. Simple counter-example can be avoided by simple static
analysis.

3. Using many orders increases the size of the minimum
counter-example.

The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.

3. Using many orders increases the size of the minimum
counter-example.

The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.
3. Using many orders increases the size of the minimum

counter-example.

The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.
3. Using many orders increases the size of the minimum

counter-example.
The smallest counter-example just has to be bigger (for some
measure) than the specification.

Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 15 / 21

Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.
3. Using many orders increases the size of the minimum

counter-example.
The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...



Efficient Generation of C Code from CCSL 16 / 21

Optimizing the Code Generation

Presentation of the Code Generation

Idea of the Architecture

1. Each alone constraint (or determined component) produces its
current stateless constraint.

2. The solver gets the constraints and gives back an array with
the result.

3. Each constraints check the array and updates its state if
needed.



Efficient Generation of C Code from CCSL 17 / 21

Optimizing the Code Generation

Optimisation of the Generated Code

Optimisation of the Generated Code

Optimisation of the code using:
▶ Many compilers and compilation options.
▶ Two profilers: gprof and IntelVsyncProfiler.



Efficient Generation of C Code from CCSL 18 / 21

Optimizing the Code Generation

Results

Initial Version

Figure 10: Performance of the Initial Code Generation



Efficient Generation of C Code from CCSL 19 / 21

Optimizing the Code Generation

Results

Final Version

Figure 11: Performance of the Final Code Generation



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.

▶ Some Performance Issues.

– Need a wider evaluation campaign.

▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.
▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.

▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.
▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.
▶ Still correctness Issues.

– Formalise the minimum failure approach.

– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.
▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.

– Deal with dead-ends.



Efficient Generation of C Code from CCSL 20 / 21

Conclusion and Future Work

Conclusion and Future Work

▶ Created an efficient and quite reliable code generator.
▶ Some Performance Issues.

– Need a wider evaluation campaign.
▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.



Efficient Generation of C Code from CCSL 21 / 21

Conclusion and Future Work

Thank you very much for your attention.


	Context and Motivation
	General Presentation of CCSL
	Solving Strategies

	Determined Components
	Definition
	Example

	Representation of the Problem
	Stateless Constraints
	General Issue
	The Order Approach
	The Backtrack Approach

	Proof of NP-Completeness
	Solving the Issue
	Smallest Possible Failure

	Optimizing the Code Generation
	Presentation of the Code Generation
	Optimisation of the Generated Code
	Results

	Conclusion and Future Work

