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General Presentation of CCSL

Presentation of CCSL

Figure 1: LightCCSL Example
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General Presentation of CCSL

Semantic of CCSL

Figure 2: Union and Intersection of Clocks in CCSL
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Solving Strategies

Solving Strategies

▶ Compute the state automaton of the specification.

▶ Use a SAT-Solver at each tick to compute the next tick.
Is it possible to do better?
The goal is to generate C code from a CCSL specification that will
efficiently compute one solution to the specification.
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Determined Components

Definition

Looking for possible Precomputations

Let C and D be a determined components.

Repeat a Every k b : (a ∈ C ∧ b ∈ D) → C = D
a = Def (b, c) : (b ∈ D ∧ c ∈ D) → a ∈ D

Figure 3: Clocks in Determined Components.
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▶ Not, Equivalence.

– Union-Find.

▶ Implication.

– Implication Graph.

▶ Exclusion.

– Separation of A and ¬A.

▶ Union, Intersection, Minus.

– No simple Implication translation.
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Stateless Constraints
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a = b or c ⇒
b → a
c → a

a → ¬b → c
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¬c → a → b
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Representation of the Problem

General Issue

Main Issue

a ¬a

b

c ¬c

Figure 4: Main Issue
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Representation of the Problem

General Issue

Issue from Union

d = a ∨ b

a ¬a

b

c ¬c

Figure 5: Union Issue
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Representation of the Problem

General Issue

Issue from Minus

a = d− b ¬a

b¬b

c ¬c

d

Figure 6: Minus Issue
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Representation of the Problem

The Order Approach

The Order Approach

a b c d

x = a ∨ b y = c ∨ d

Figure 7: Order Counter-Example
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Representation of the Problem

The Backtrack Approach

The Backtrack Approach

a ¬a

b

c ¬c

Figure 8: Basic Issue
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Representation of the Problem

The Backtrack Approach

The Backtrack Approach

a

¬db

c ¬c

e

¬a

Figure 9: Backtrack Issue
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Proof of NP-Completeness

Definition (Single-Step CCSL)
Let S be a CCSL specification, n ∈ N, and T a valid schedule of S
for the n first steps. Single-Step CCSL is defined as the problem of
computing a valid n + 1th step.

Theorem
Single-Step CCSL is NP-Complete.

Proof.
Not detailed here.
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Solving the Issue

Smallest Possible Failure

What can I do now?

1. Only one defined specification to solve.
2. Simple counter-example can be avoided by simple static

analysis.
3. Using many orders increases the size of the minimum

counter-example.
The smallest counter-example just has to be bigger (for some
measure) than the specification.
Works in practice, still to be formalised...
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Optimizing the Code Generation

Presentation of the Code Generation

Idea of the Architecture

1. Each alone constraint (or determined component) produces its
current stateless constraint.

2. The solver gets the constraints and gives back an array with
the result.

3. Each constraints check the array and updates its state if
needed.
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Optimizing the Code Generation

Optimisation of the Generated Code

Optimisation of the Generated Code

Optimisation of the code using:
▶ Many compilers and compilation options.
▶ Two profilers: gprof and IntelVsyncProfiler.
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Optimizing the Code Generation

Results

Initial Version

Figure 10: Performance of the Initial Code Generation
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Optimizing the Code Generation

Results

Final Version

Figure 11: Performance of the Final Code Generation
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▶ Created an efficient and quite reliable code generator.

▶ Some Performance Issues.

– Need a wider evaluation campaign.

▶ Still correctness Issues.

– Formalise the minimum failure approach.
– Switch to LightC.
– Deal with dead-ends.
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Conclusion and Future Work

Thank you very much for your attention.
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