

Model based diagnosis: a research agenda

Albert Benveniste (Inria-Rennes)

Synchron 2021

Diagnosis, health monitoring, and maintenance, are becoming more and more important

The case of aeronautic sector

Albert Benveniste Synchron 202

Business model of aeronautic sector

Past: selling products

- Aircraft
- Engine
 - Selling with low margin,
 - Revenues from parts
- Landing system

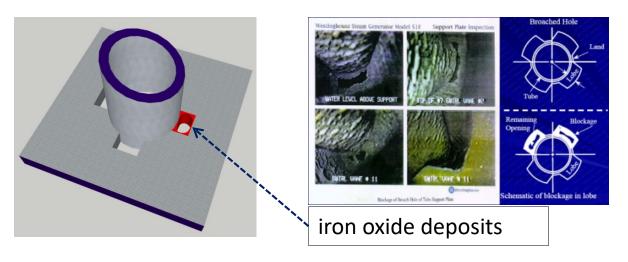
Tomorrow: pay-on-use, services

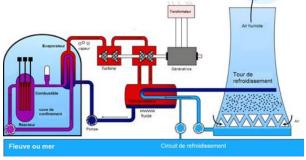
- Airbus' Skywise Health
 Monitoring Platform
- Boeing: same
- Air France Industries: same
- Services from data analytics

ENGINE HEALTH FUNCTIONS

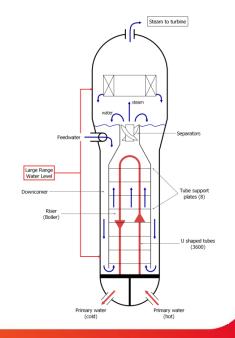
Status of research

Academics


- Deep learning, data-based
- Indicator based diagnosis
 - Indicators from physical and system knowledge (manual)
 - Statistical analysis
- Model based diagnosis
 - OK for small systems


Industry

- Diagnosis and HM developed after system design (separately, different team)
- Indicator based diagnosis most commonly used
- Getting indicators is costly
 ⇒ Data analytics preferred



Clogging of steam generators (EDF) beyond local diagnosis?

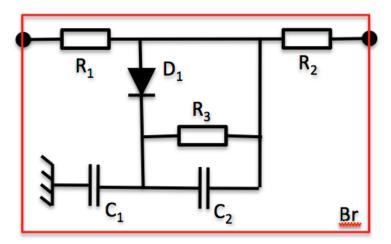
- Needed: method to assess the SG clogging rate, better than current methods based on inspection at shutdowns
- **Success**: solved using physical modeling based diagnosis
- Problem: this was possible because diagnosis problem kept local to the SG; for most problems, global effects exist

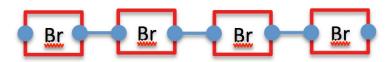
Research needs

Academics

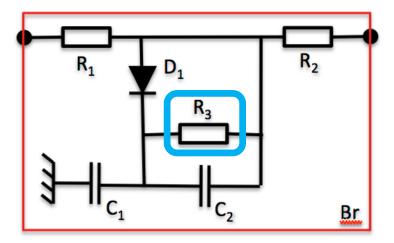
- Diagnosis Models from Design Models?
- Indicator from Design Models ?
 - Indicators from design models (automatically)
 - Statistical analysis, machine learning

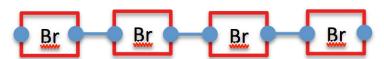
Systems Industry


- {Data+Model}-based diagnosis:
 - OEM knowns his system: making a competitive advantage of this
 - Ex: Air France Industries / Safran
- Getting models?
- Improving statistics and machine learning by using models?

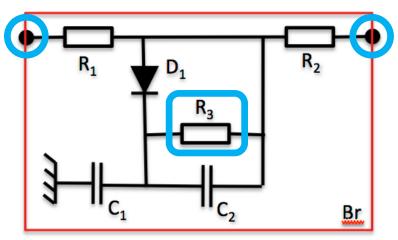


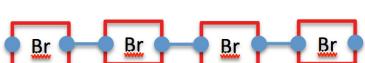
DAE based modeling & System wide Diagnosis


Automatic generation of fault indicators from design model

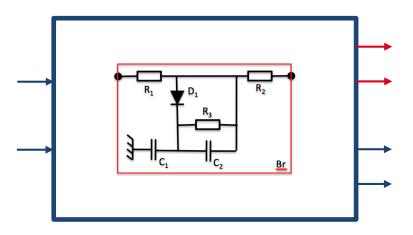


- Westinghouse braking system;
 control: pressure at the head of the train
- Each wagon induces two modes: valve D_1 open / closed
 - 2^n modes for a n wagons train
- Resistor R_3 captures possible leakage
 - Nominal / Leak : $R_3 = \infty / R_3 < \infty$



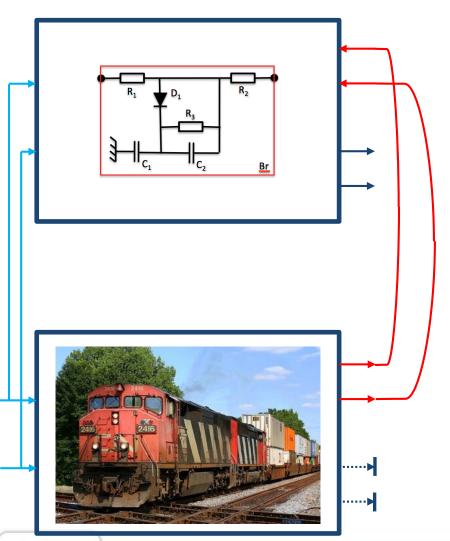


- Westinghouse braking system;
 control: pressure at the head of the train
- Each wagon induces two modes: valve D_1 open / closed
 - 2^n modes for a n wagons train
- Resistor R_3 captures possible leakage
 - Nominal / Leak : $R_3 = \infty / R_3 < \infty$
- Goal: monitoring for a possible leakage
 - What should we measure?
 - Where to put sensors?
- Getting all of this from model, automatically



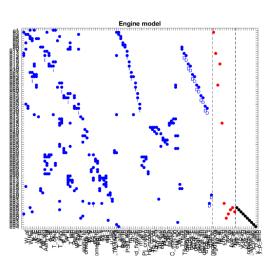
- Failure non detectable when D_1 open (no breaking mode)
 - (no flow traverses R_3 in this case)
 - Diagnosticability is mode-dependent

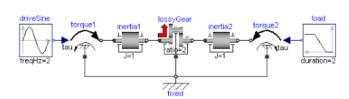
- How to generate parity checks
 - To monitor all possible leaks
 - By measuring (some or all of) the flows?



We have our simulation model

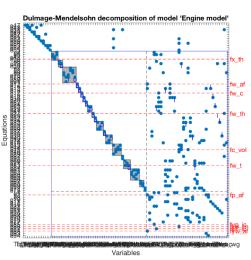
- And the actual system for monitoring
- Some (but not all) states or outputs are measured



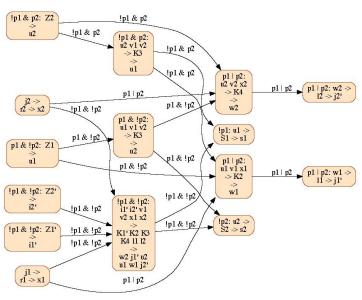

- Feed the model with measured data
- Yields an over-constrained (multimode)
 DAE model
- Generate automatically (via structural analysis) parity checks: minimal structurally singular subsystems (MSSS)
- Each parity check yields a residual, serving as fault indicator
- Collect measurement data from the system in operation

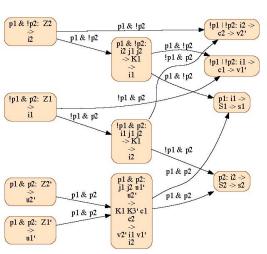
Frisk & Krysander, Linköping, Sweden

Incidence graph generated from Simulink or Modelica

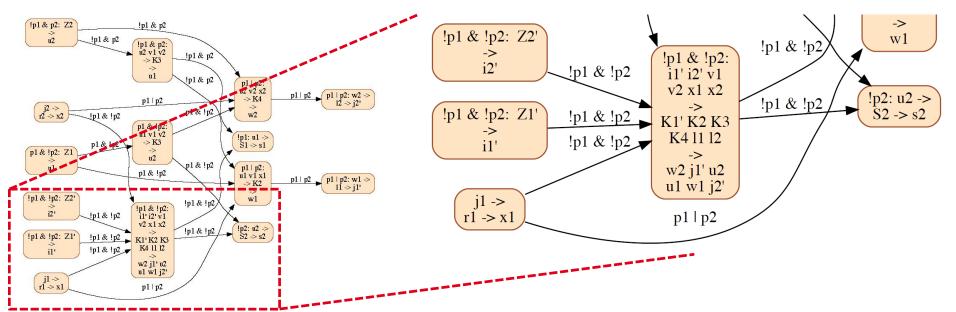


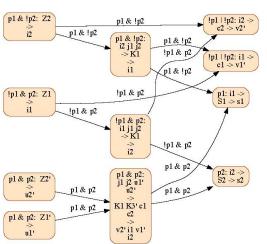
https://faultdiagnosistoolbox.github.io/usecase/


Parity checks


Clustering faults that cannot be distinguished given sensor setup

Using IsamDAE [Caillaud, Malandain]





Conditional dependency graph between blocks

Using IsamDAE [Caillaud, Malandain]

- Zooming on a block
 - Measuring "s2" turns it into an "input" ⇒
 (mode dependent) Over-Constrained Subsystem
 - Minimal OCS: mode dependent parity check

Putting statistics and machine learning on top of this

Probabilistic programming?

Sketch

If P then
$$\begin{cases} f_1(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0\\ &\ldots\\ f_m(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0 \end{cases}$$
 satisfied/violated?

 Parity check: DAE based overconstrained model used as test case: testing for equality is non robust

Sketch

$$\begin{cases} f_1(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0\\ &\ldots\\ f_m(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0 \end{cases}$$
 satisfied/violated?

 Parity check: DAE based overconstrained model used as test case: testing for equality is non robust

$$\begin{aligned} & \text{If P then} \begin{cases} |f_1(\dot{x}_1,x_1,\dots,\dot{x}_n,x_n)| \leq \varepsilon \\ & \dots \\ |f_m(\dot{x}_1,x_1,\dots,\dot{x}_n,x_n)| \leq \varepsilon \end{cases} & \text{satisfied/violated?} \end{aligned}$$

• Tuning threshold ϵ using Machine Learning, based on statistics in nominal status

Sketch

If P then
$$\begin{cases} f_1(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0\\ &\ldots\\ f_m(\dot{x}_1,x_1,\ldots,\dot{x}_n,x_n)=0 \end{cases}$$
 satisfied/violated?

- Difficulty: some of the (differentiated) variables are unknown
- How to compute them, particularly when the model is violated?
- In control: **observers**; but difficult to design in general (KF, EKF, non-linear...); worse if multimode
- Alternative approach needed

Conclusion

- Model based diagnosis needed, data based not enough
- "Model based": getting the model manually is too costly
- DAE models ⇒ fault indicators automatically: test cases
- Making this robust: model uncertainties and noises, statistical analysis

Go for {DAE models} + {probabilistic programming}?

Thanks

