
Constraining end-to-end delays in multi-periodic Lustre programs

Timothy Bourke Michel Angot

Marc Pouzet Vincent Bregeon

Matthieu Boitrel

25 November 2021, Synchron, La Rochette



Context

• Standard practice: design an application as a set of periodically executed
tasks that communicate through shared variables.

• Read data from sensors via a bus, compute through sequences of cyclic tasks,
and write to actuators via the bus.

• Airbus project “All-in-Lustre”

» Current system: each task is a Lustre node (≈ 5 000) with separate constraints on
order and latency.

» Desired system: “All-in-Lustre”: compose the nodes in a single Lustre program
with new features for specifying periods and execution constraints.

» Generate sequential code for cyclic execution on a single-processor platform.

» Base period = 5ms. Tasks at 10ms, 20ms, 40ms, and 120ms.

» Tasks are already chopped up into small pieces.

1 / 23



Context

• Standard practice: design an application as a set of periodically executed
tasks that communicate through shared variables.

• Read data from sensors via a bus, compute through sequences of cyclic tasks,
and write to actuators via the bus.

• Airbus project “All-in-Lustre”

» Current system: each task is a Lustre node (≈ 5 000) with separate constraints on
order and latency.

» Desired system: “All-in-Lustre”: compose the nodes in a single Lustre program
with new features for specifying periods and execution constraints.

» Generate sequential code for cyclic execution on a single-processor platform.

» Base period = 5ms. Tasks at 10ms, 20ms, 40ms, and 120ms.

» Tasks are already chopped up into small pieces.

1 / 23



Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2, s3 : int :: 1/3;
let

s0 = read();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations in this program are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period and ‘within’ an instant:
s0 → s1 → s2 → s3 → ()

$ presseail example1.ail -v --glpk --print
2 / 23



Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2, s3 : int :: 1/3;
let

s0 = read();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations in this program are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period and ‘within’ an instant:
s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print
2 / 23



Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2, s3 : int :: 1/3;
let

s0 = read();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations in this program are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period and ‘within’ an instant:
s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print
2 / 23



Slow flows

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int);

node main() returns ()
var s0, s1, s2, s3 : int :: 1/3;
let

s0 = read();
s1 = filter(s0);
s2 = filter(s1);
s3 = s1 + s2;
() = write(s3);

tel

• Declare variables of rate 1/3 (period = 3)

• Calculate each one once every three cycles

• The 5 calculations in this program are synchronous
relative to the period
even if they are not necessarily simultaneous
relative to the base clock

• s3 = s1 + s2 is well clocked
since s1 :: 1/3, s2 :: 1/3, and s3 :: 1/3.

• Causality applies ‘across’ a period and ‘within’ an instant:
s0 → s1 → s2 → s3 → ()

$ presseail example1.ail --glpk --compile 1 --print
2 / 23



Declare and constrain resources

resource cpu : int

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int)

requires (cpu = 5);

node main() returns ()
var s0, s1, s2, s3 : int :: 1/3;
let

resource cpu <= 4;
s0 = read();
s1 = filter(s0);
s2 = filter(s1);
s3 = filter(s2);
() = write(s3);

tel

• Declare named weights to represent resources
required per cycle

» Simple proxies for worst-case execution time

» Network bus accesses

• Use to constrain scheduling

• normally: resource balance cpu

3 / 23



Macro-scheduling of equations

• Label each equation, scheduling assigns a phase offset

» Lustre with annotations as an ersatz intermediate language

» label(filter_0) phase(1 % 3) s2 = filter(s1);

• Phase offsets are constrained by

» Data dependencies in the source program

» Resource constraints

» Latency constraints. . .

• Phase offset (and latency) are implementation details

» They are relative to the base rate, not the equation rate

» Program semantics is independent of phase offsets

4 / 23



Macro-scheduling using Integer Linear Programming (ILP)

Usual Workflow
1. $ presseail example2.ail --write-lp example2.lp

writes the scheduling constraints to a file
2. Call cplex
3. $ presseail example2.ail --read-sol example2.sol --compile 1

reads the solution and generates code

Testing simple examples
• $ presseail example2.ail --glpk --compile 1

5 / 23



Macro-scheduling using Integer Linear Programming (ILP)

Usual Workflow
1. $ presseail example2.ail --write-lp example2.lp

writes the scheduling constraints to a file
2. Call cplex
3. $ presseail example2.ail --read-sol example2.sol --compile 1

reads the solution and generates code

Testing simple examples
• $ presseail example2.ail --glpk --compile 1

5 / 23



Minimize
rmax.equ

Subject to
pw.def0.filter: pw.0.filter + pw.1.filter + pw.2.filter = 1
pw.def1.filter: 2 pw.2.filter + pw.1.filter - p.filter = 0
...
depd.wr.p.read.p.filter_5: p.filter - p.read >= 0
...
rbnd.cpu_8: 5 pw.0.filter_1 + 5 pw.0.filter_0 + 5 pw.0.filter <= 8
rbnd.cpu_7: 5 pw.1.filter_1 + 5 pw.1.filter_0 + 5 pw.1.filter <= 8
rbnd.cpu_6: 5 pw.2.filter_1 + 5 pw.2.filter_0 + 5 pw.2.filter <= 8

Bounds General
0 <= p.read < 3 p.read p.filter ...
0 <= p.filter < 3 Binary
... pw.0.read pw.1.read pw.2.read pw.0.filter ...

End 6 / 23



Changing speeds: 1

resource cpu : int

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int)

requires (cpu = 5);

node main(s0 : int) returns (s4 : int)
var s1, s2, s3 : int :: 1/3;
let

resource cpu <= 8;
s1 = filter(s0 when (0 % 3));
s2 = filter(s1);
s3 = filter(s2);
s4 = current(0, (2 % 3), s3);

tel

• x when c

» c is for ‘(sampling) choice’

» sub-sampling of a stream

» fast-to-slow rate change

• current(0, c, x)

» stutter stream elements

» slow-to-fast rate change

y = merge c x ((0 fby y) when not c)

$ presseail example3.ail --glpk --compile 1
7 / 23



Changing speeds: 2

r = w when (i % n)

• (i % n): take the ith of every n elements.

• n is the rate of w relative to r
E.g., for w :: 1/4 and r :: 1/8, n is 2.

• It can be deduced from the clocks, but is
useful for readability.

• It implies a lower bound on the scheduling
of the equation.

r = current(0, (i % n), w)

• (i % n): update r from the ith of every n
elements of w.

• n is the rate of r relative to w
E.g., for r :: 1/4 and w :: 1/8, n is 2.

• The first argument is a constant giving the
default value.

» Needed even for (0 % n). . .
r = current0(w)?

• It implies an upper bound on the
scheduling of the equation.

8 / 23



Changing speeds: 2

r = w when (i % n)

• (i % n): take the ith of every n elements.

• n is the rate of w relative to r
E.g., for w :: 1/4 and r :: 1/8, n is 2.

• It can be deduced from the clocks, but is
useful for readability.

• It implies a lower bound on the scheduling
of the equation.

r = current(0, (i % n), w)

• (i % n): update r from the ith of every n
elements of w.

• n is the rate of r relative to w
E.g., for r :: 1/4 and w :: 1/8, n is 2.

• The first argument is a constant giving the
default value.

» Needed even for (0 % n). . .
r = current0(w)?

• It implies an upper bound on the
scheduling of the equation.

8 / 23



α

α

3

One slow tick is synchronous with three fast ones.

α

α

2
α

4

Implementation problems: assign computations to phases, buffer values

9 / 23



α

α

3

One slow tick is synchronous with three fast ones.

α

α

2
α

4

Implementation problems: assign computations to phases, buffer values

9 / 23



0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 0 0 0

s0po:
s1po:

s1po:
s2po:

s2po:
s3po:

s3po:
s4po:

node main (s0 : int) returns (s4 : int);
var s1, s2, s3 : int :: 1/3;
let
label(filter) phase(0 % 3) s1 = filter(s0 when (0 % 3));
label(filter_0) phase(1 % 3) s2 = filter(s1);
label(filter_1) phase(2 % 3) s3 = filter(s2);
label(s4_2) phase(0 % 1) s4 = current(0, (2 % 3), s3);

tel
10 / 23



0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 0 0 0

s0po:
s1po:

s1po:
s2po:

s2po:
s3po:

s3po:
s4po:

node main (s0 : int) returns (s4 : int);
var s1, s2, s3 : int :: 1/3;
let
label(filter) phase(0 % 3) s1 = filter(s0 when (0 % 3));
label(filter_0) phase(1 % 3) s2 = filter(s1);
label(filter_1) phase(2 % 3) s3 = filter(s2);
label(s4_2) phase(0 % 1) s4 = current(0, (2 % 3), s3);

tel
10 / 23



Changing speeds whenever

resource cpu : int

node read() returns (y:int);
node write(x:int) returns ();
node filter(x:int) returns (y:int)

requires (cpu = 5);

node main(s0 : int) returns (s4 : int)
var s1, s2, s3 : int :: 1/3;
let

resource cpu <= 8;
s1 = filter(s0 when (? % 3));
s2 = filter(s1);
s3 = filter(s2);
s4 = current(0, (? % 3), s3);

tel

• Manual choices in when and current
over-constrains scheduling.

• Impractical for 100 000s variables!

• So write (? % n) for “don’t care”.

• Scheduling still respects casuality

» y = x when (? % n) — x0 before y .

» y = current(0, (? % n), x) — x before yn−1.

• What about determinism?

• Synchron 2018, F. Maraninchi
“Non-determinism reference semantics”

$ presseail example4.ail --print --glpk --print
11 / 23



Code generation: 1

Generalize the clock-directed scheme
[
Biernacki, Colaço, Hamon, and Pouzet
(2008): Clock-directed modular code gen-
eration for synchronous data-flow languages

]
• --compile n generates n step functions

» For the ith step function, stepi , List .filter_map equations by phase offset.

» Generate dependency graph ignoring variables not in stepi
—macro-scheduling guarantees they will already have been calculated.

» Micro-schedule equations in stepi w.r.t. dependencies and phase offset/rate.

• Generate multiple Obc step methods, buffer values in state variables.

• Optimize the Obc by joining adjacent case statements.

12 / 23

https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf


Code generation: 2

Specialized case construct

case (state(c_3) mod 3) {
0: { skip }
1: { state(s2) := filter(state(s1)) }
2: { skip }
else undefined

};
case (state(c_3) mod 3) {
0: { state(s1) := filter(s0) }
1: { skip }
2: { skip }
else undefined

};

case (state(c_3) mod 3) {
0: { state(s1) := filter(s0) }
1: { state(s2) := filter(state(s1)) }
2: { skip }
else undefined

};

13 / 23



Code generation: 2

The ‘else undefined’ simplifies optimisation under (implicit) invariants

case (state(c_3) mod 24) {
7: { state(x) := read_real() }
23: { y := read_real() }
else undefined }

⇒
if (state(c_3) mod 24 = 7) {

state(x) := read_real()
} else {

y := read_real()
}

case (state(c_3) mod 24) {
7: { state(x) := read_real() }
15: { skip }
23: { y := read_real() }
else undefined }

⇒
case (state(c_3) mod 24) {
7: { state(x) := read_real() }
15: { skip }
23: { y := read_real() }
else undefined }

13 / 23



Causality, Scheduling,and Semantics

c = 0 fby (c + 1);
vf = current(0, (4 % 6), vs) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

14 / 23



Causality, Scheduling,and Semantics

c = 0 fby (c + 1);
vf = current(0, (4 % 6), vs) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·

14 / 23



Causality, Scheduling,and Semantics

c = 0 fby (c + 1);
vf = current(0, (4 % 6), vs) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·
14 / 23



Causality, Scheduling,and Semantics

c = 0 fby (c + 1);
vf = current(0, (4 % 6), vs) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·
14 / 23



Causality, Scheduling,and Semantics

c = 0 fby (c + 1);
vf = current(0, (4 % 6), vs) + c;
vs = vf when (1 % 6) + 5; fast slow

α

α

3
i

o

vf

vs

Causal dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

Scheduling dependencies
c

vf

vs

when
(1

%
6)

cu
rre
nt
(4

%
6)

%

vf 0 1 2 3 10 11 12 13 14 15 28 29 · · ·
c 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

vs 6 18 · · ·
14 / 23



Bounding End-to-End Latency

latency_chain VAR_04101 8
(data21510 −> data05224 −> data13157
−> data26032 −> data03229 −> data31722
−> data21555 −> data29595 −> data36187
−> data13349 −> data06816 −> data01252
−> data18196 −> data20921 −> data16645
−> data11226 −> data29115 −> data23284
−> data36163 −> data14490);

• Specify critical computation chains

• Bound the end-to-end latency in terms of the base clock

• Generate additional scheduling constraints

15 / 23



End-to-End Latency

Task B

first in last in

a: firstÆ first

b: firstÆ last

c: last Æ first

d: last Æ last

Task A

Task C

first out

input interval

last out
output interval

Figure 7. Example with Task Schedule and Several End-to-End Semantics

We finally have to do this for all possible timed paths,
and we obtain the set of all reachable timed paths TPreach:

TPreach = {�!tp 2 Nn | reach(
�!
tp)} (9)

Together with Equation 1, we can now determine the
maximum latency over all reachable paths:

�LL(p) = max{�(
�!
tp) | �!tp 2 TPreach} (10)

The superscript LL indicates the “last-to-last” semantics
which is explained in the next section.

4 Other End-to-End Semantics

In the preceding section, we have identified key prop-
erties of data reachability within register communication
paths, and we have provided a first end-to-end calculation.
This so far presented delay calculation follows the seman-
tics of “maximum data age”. This section introduces ex-
tensions that allow covering also other semantics, based on
reachability functions introduced above.

Generally speaking there are four different semantics
possible in an over-/under-sampling situation. These possi-
bilities are illustrated in Figure 7. The input and output in-
tervals illustrate the time span in which input changes have
an impact on the delay and output data is actually becom-
ing available. The so far introduced “max age” semantics
corresponds to the “last-to-last” paths from that figure. The
formulation “last-to-last” refers to the fact that it considers
the delay between the last input (that is not overwritten) un-
til the last output (even in case of duplicates). In the next
paragraphs, we extend the formal framework to cover also
the remaining three semantics.

4.1 Last-to-First

In this case, we are seeking the maximum delay of
all non-overwritten (“last”) inputs until the non-duplicate
(“first”) output of the path. This is a bit more complex that
the above mentioned calculation, because we must ignore
all timed paths that lead to later (non-first) duplicates of
other paths with the same start instance. With respect to
Figure 6, this applies to timed path H and D, which produce
duplicate of path A data.

Simply speaking, the set of all non-duplicate, reachable
timed paths TPfirst is that sub-set of all reachable timed path
TPreach for which no timed path exists that shares the same
start instance of the first task and has an earlier end instance
of the last task.

TPfirst = {�!tp 2 TPreach |
¬9

�!
tp0 2 TPreach : tp01 = tp1 ^ tp0n < tpn} (11)

The maximum “last-to-first” timed path delay �LF is
given by:

�LF (p) = max{�(
�!
tp) | �!tp 2 TPfirst} (12)

4.2 First-to-Last and First-to-First

So far, we have considered semantics where the last non-
overwritten input is considered, i.e. that input that actually
travels through the path. Now, we will consider also inputs
that are overwritten. This is important in situations where
we are interested in the delay that system needs to react to
value changes at the input that can arrive asynchronously

[
Feiertag, Richter, Nordlander, and Jonsson (2008): A Compositional Framework for End-to-End
Path Delay Calculation of Automotive Systems under Different Path Semantics

]
16 / 23



Flowgraph links
direct communications

x direct, write-before-read, coforward

last x direct, read-before-write, cobackward

fast-to-slow communications

x when (? % n) first-write-before-read, coforward

(last x) when (? % n) read-before-last-write, cobackward

slow-to-fast communications

current(c, (? % n), x) coforward or cobackward

current(c, (? % n), last x) forbidden

17 / 23



Flowgraph links
direct communications

x direct, write-before-read, coforward

last x direct, read-before-write, cobackward

fast-to-slow communications

x when (? % n) first-write-before-read, coforward

(last x) when (? % n) read-before-last-write, cobackward

slow-to-fast communications

current(c, (? % n), x) coforward or cobackward

current(c, (? % n), last x) forbidden

17 / 23



Flowgraph links
direct communications

x direct, write-before-read, coforward

last x direct, read-before-write, cobackward

fast-to-slow communications

x when (? % n) first-write-before-read, coforward

(last x) when (? % n) read-before-last-write, cobackward

slow-to-fast communications

current(c, (? % n), x) coforward or cobackward

current(c, (? % n), last x) forbidden

17 / 23



Showlatency demo

18 / 23



Related Work

• Prelude

• Lucy-n

• Harmonic 1-synchronous clocks / affine clocks

• anything missing?

19 / 23



Related Work: Prelude

• Language
[
Forget, Boniol, Lesens, and Pagetti (2010): A Real-Time Architecture
Design Language for Multi-Rate Embedded Control Systems

]
and compiler

[
Pagetti, Forget, Boniol, Cordovilla, and Lesens (2011): Multi-task Im-
plementation of Multi-periodic Synchronous Programs

]
• Specify task periods and offsets.

• Compose real-time primitives to express communication patterns.

• Semantic model based on tagged signals
• Generate and schedule a set of OS tasks
» WCET, release times, deadlines

» Adapt existing scheduling algorithms to respect data dependencies (causality).

Our work
• Task periods only—offsets as an implementation detail

• Every “task” completes within a cycle.

• No scheduling, just generate imperative code.
20 / 23

http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/s10626-011-0107-x


Related Work: Lucy-n

• Model
[
Cohen, Duranton, Eisenbeis, Pagetti, Plateau, and Pouzet (2006): N-
Synchronous Kahn networks: a relaxed model of synchrony for real-time
systems

]
and language

[
Mandel, Plateau, and Pouzet (2010): Lucy-n: a
n-Synchronous extension of Lustre

]
• Flexible scheduling patterns (0010(010)) and buffering

• Sophisticated type-based analysis for causality and buffer sizes

• Less focus on code generation

Our work
• Less flexible scheduling

• Buffering is implicit and very limited

21 / 23

http://dx.doi.org/10.1007/978-3-642-13321-3_17
http://dx.doi.org/10.1007/978-3-642-13321-3_17


Related Work: Iooss et al.

• “1-synchronous” programs
[
Iooss, Pouzet, Cohen, Potop-Butucaru, Souyris, Bregeon, and
Baufreton (2020): 1-Synchronous Programming of Large Scale,
Multi-Periodic Real-Time Applications with Functional Degrees of
Freedom

]
• Two-element clocks: [phase, period ]

(0k10n−k−1 or 0k(10n−1), where n is the period and 0 ≤ k < n is the phase
• Related to work on affine clocks
» [Curic (2005): Implementing Lustre Programs on Distributed Platforms

with Real-Time Constraints ]

»
[
Smarandache, Gautier, and Le Guernic (1999): Validation of Mixed Signal-Alpha
Real-Time Systems through Affine Calculus on Clock Synchronisation Constraints

]
• Several operators: when, current, delay, delayfby, buffer, bufferfby

• Prototype in Heptagon: introduces (lots of) whens and merges

Our work
• Simpler clocks, fewer operators, implicit buffering

• Generate imperative code directly
22 / 23

https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
http://dx.doi.org/10.1007/3-540-48118-4_22
http://dx.doi.org/10.1007/3-540-48118-4_22


Conclusion

• Simple prototype with ILP scheduling and basic code generation.

• Tested on Airbus example with 5000 nodes

Work in progress
• Reviewing literature on end-to-end timing properties of task chains.

• Adding support for explicit sample choices.

• Allowing variables in sample choices?

23 / 23



References I

• Biernacki, D., J.-L. Colaço, G. Hamon, and M. Pouzet (June 2008). “Clock-directed modular code
generation for synchronous data-flow languages”. In: Proc. 9th ACM SIGPLAN Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES 2008). Tucson, AZ, USA: ACM Press, pp. 121–130.

• Cohen, A., M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet (Jan. 2006).
“N-Synchronous Kahn networks: a relaxed model of synchrony for real-time systems”. In: Proc. 33rd ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2006). Charleston, SC, USA:
ACM Press, pp. 180–193.

• Curic, A. (Sept. 2005). “Implementing Lustre Programs on Distributed Platforms with Real-Time
Constraints”. PhD thesis. Grenoble, France: Université Joseph Fourier.

• Feiertag, N., K. Richter, J. Nordlander, and J. Jonsson (Nov. 2008). “A Compositional Framework for
End-to-End Path Delay Calculation of Automotive Systems under Different Path Semantics”. In: Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2008, co-located with
RTSS 2008). Barcelona, Spain.

I

https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf


References II

• Forget, J., F. Boniol, D. Lesens, and C. Pagetti (Mar. 2010). “A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems”. In: Proc. 25th ACM Symp. Applied Computing (SAC’10).
Ed. by S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung. Sierre, Switzerland: ACM,
pp. 527–534.

• Iooss, G., M. Pouzet, A. Cohen, D. Potop-Butucaru, J. Souyris, V. Bregeon, and P. Baufreton (Mar.
2020). “1-Synchronous Programming of Large Scale, Multi-Periodic Real-Time Applications with
Functional Degrees of Freedom”.

• Mandel, L., F. Plateau, and M. Pouzet (June 2010). “Lucy-n: a n-Synchronous extension of Lustre”. In:
Proc. 10th Int. Conf. on Mathematics of Program Construction (MPC’ 2010). Ed. by C. Bolduc,
J. Desharnais, and B. Ktari. Vol. 6120. LNCS. Québec City, Canada: Springer, pp. 288–309.

• Pagetti, C., J. Forget, F. Boniol, M. Cordovilla, and D. Lesens (Sept. 2011). “Multi-task Implementation of
Multi-periodic Synchronous Programs”. In: Discrete Event Dynamic Systems 21.3, pp. 307–338.

II

https://hal.inria.fr/hal-02495471
https://hal.inria.fr/hal-02495471
http://dx.doi.org/10.1007/978-3-642-13321-3_17
http://dx.doi.org/10.1007/s10626-011-0107-x
http://dx.doi.org/10.1007/s10626-011-0107-x


References III

• Smarandache, I. M., T. Gautier, and P. Le Guernic (Sept. 1999). “Validation of Mixed Signal-Alpha
Real-Time Systems through Affine Calculus on Clock Synchronisation Constraints”. In: Proc. World
Congress on Formal Methods in the Development of Computing Systems (FM’99). Ed. by J. M. Wing,
J. Woodcock, and J. Davies. Vol. 1709. LNCS. Toulouse, France: Springer, pp. 1364–1383.

III

http://dx.doi.org/10.1007/3-540-48118-4_22
http://dx.doi.org/10.1007/3-540-48118-4_22

	Title slide
	Context
	Slow flows
	Declare and constrain resources
	Macro-scheduling of equations
	Macro-scheduling using Integer Linear Programming (ILP)
	Changing speeds: 1
	Changing speeds: 2
	Changing speeds whenever
	Code generation: 1
	Code generation: 2
	Causality, Scheduling,and Semantics
	Bounding End-to-End Latency
	End-to-End Latency
	Flowgraph links
	Showlatency demo
	Related Work
	Related Work: Prelude
	Related Work: Lucy-n
	Related Work: Iooss et al.
	Conclusion
	Appendix
	References
	References
	References


