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Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Cybersecurity in Industrial Control Systems

Industrial Control Systems
(ICS): critical infrastructure

Need for cybersecurity

Control of a response
mechanism to potential attacks

Proposal: use of controller
synthesis to produce
automatically a controller for
this response mechanism
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Controlled ICS

Industrial control system:

composed of Remote Terminal Units (RTU), connected with sensors
and actuators of the physical process

Programmable Logic Controllers (PLC)

PLCs and RTUs are connected by a LAN

PLCs run programs controlling the RTUs (possibly several programs
by PLC)
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Responses to attacks

What kind of response to attacks/alarms?

Type of attacks considered: alarms on PLCs, triggered by an Intrusion
Detection System (IDS)

Dynamic reconfigurations:

isolation of nodes on the LAN
execution location of programs on PLCs
execution modes: Nominal, Degraded, Safe

Execution modes ⇒ different execution times

Objectives

execution of programs on non-alarmed PLCs

keep programs in Nominal or Degraded modes as long as possible

bound execution time on each PLC
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Cybersecurity as a Control Problem

Closing the loop:

inputs: alarms from the IDS

outputs: isolation of nodes of the LAN, modes and execution location
of programs

state: current execution modes/location of programs

ex loci

self-protection
manager

ICS
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alarmi

PLCi

isolationi

LAN

states
cwi
swi

ei

programs
modei

Combinatorics of solutions ⇒ controller difficult to program “manually”



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Heptagon/BZR

Automation of controller generation: use of Heptagon/BZR

Managed system modelled as automata and (synchronous) dataflow
equations

Controllable variables defined at runtime by a synthesized controller,
to enforce synthesis objectives: invariant temporal properties

Controller synthesized offline

controller

automaton model

managed system

state +
uncont. inputs controllable vars

monitor
(uncontrollable inputs)

execute (outputs)

Heptagon/BZR program
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Classical design cycle

Programmer Model-checker

Does my program satisfy the property P ?

No.

Does my (modified) program satisfy the property P ?

No.

Does my (modified) program satisfy the property P ?

No.
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Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.
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Synchronous programming in Heptagon/BZR

node alloc(r : bool) returns (g : bool)

let

automaton

state Idle

do g = false until r then Alloc

state Alloc

do g = true until (not r) then Idle

end

tel

node main(r0,r1 : bool) returns (g0,g1 : bool)

let

g0 = inlined alloc(r0);

g1 = inlined alloc(r1);

tel

main(r0, r1) = (g0, g1)

Idle

g0 = false

Alloc

g0 = true

r0¬r0

Idle

g1 = false

Alloc

g1 = true

r1¬r1

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 1 1 1 1 . . .
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node main(r0,r1 : bool) returns (g0,g1 : bool)

let
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contract mechanism
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constraint: controller computed by discrete controller synthesis
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node main(r0,r1 : bool) returns (g0,g1 : bool)

contract

assume true

enforce not (g0 & g1) with (c0,c1:bool)

let

g0 = inlined alloc(r0 & c0);

g1 = inlined alloc(r1 & c1);

tel
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node main(r0,r1 : bool) returns (g0,g1 : bool)

var c0,c1:bool

let

(c0,c1) = controller(r0,r1);

g0 = inlined alloc(r0 & c0);

g1 = inlined alloc(r1 & c1);

tel

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 0 0 1 1 . . .

contract mechanism

nondeterminism: controllable variables

constraint: controller computed by discrete controller synthesis
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Method for obtention of response mechanism controller

Using Heptagon/BZR:

model PLCs and programs as automata + dataflow equations

express response objectives as synthesis objectives

compile and synthesize the controller
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Modelling ICS

Problem stated as:

a set of n control programs Pi , i = 1, . . . , n;

a set of p PLCs Cj , j = 1, . . . , p;

maxj is the maximum cycle duration of PLC Cj ;

nij is the duration of the nominal version of program Pi on PLC Cj ;

dij is the duration of the degraded version of program Pi on PLC Cj .
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PLC model

node plc(alarm:bool) = (plc_avail:bool)

Available

plc avail = true

Attacked

plc avail = false

alarm

Input: alarm, true when the IDS detects an alarm for this PLC

Output: plc avail, true when the PLC is “available” (until first
alarm)

Parallel instances for each PLC:

plc_avail1 = plc(alarm1);

...

plc_availp = plc(alarmp);
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Program model

node prog<<dn1, . . . , dnp, dd1, . . . , ddp>>

(c_exec_loc:arch_element;

deg,safe,cw,sw:bool)

= (mode:prog_mode;exec_loc:arch_element;

dur1, . . . , durp:int)

N

mode = Nominal

exec_loc = c_exec_loc ->if cw then pre exec_loc

else c_exec_loc

duri = if exec_loc = PLCi then dni else 0

S

mode = Safe

dur plci = 0

D

mode = Degraded

exec_loc = c_exec_loc

duri = if exec_loc = PLCi then ddi else 0

deg and (not cw or sw)
safe

safe

states corresponding to program modes: Nominal (N), Degraded (D),
Safe (S)

input c_exec_loc: controllable variable, control the location of the
program
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Program model — instances

Node prog instantiated for each program:

(mode1,ex_loc1,dur11,. . .,dur1p) =

prog<<n11,. . .,n1p,d11,. . .,d1p>> (el1,cd1,es1 or cs1,cw1,sw1);

...

(moden,ex_locn,durn1,. . .,durnp) =

prog<<nn1,. . .,nnp,dn1,. . .,dnp>> (eln,cdn,esn or csn,cwn,swn);

In this instantiation:

eli are controllable variables for execution locations of program i

cdi and csi are controllable variables for switching programs to
degraded or safe modes

durij is:

0 if program i is not executed on PLC j ;
duration of current mode, if program i is executed on PLC j
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Global cost model and control objectives

Computation of total duration of programs on each PLC:

dur_plc1 = dur11 + . . . + durn1

...

dur_plcp = dur1p + . . . + durnp

Synthesis objective: cycle duration on PLCs

Duration of execution of programs on PLCs should be less than the cycle
time of this PLC

enforce

p∧
i=1

dur plci ≤ maxi
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Control objectives (contd)

Synthesis objective: no program on attacked PLCs

enforce

p∧
i=1

¬plc availi ⇒ (dur plci = 0)

Synthesis objective: dependencies between safe/emergency stops modes

enforce (modei = Safe)⇒ (modej = Safe)

One-step optimization: maximize Nominal modes
count1 = if mode1 = Nominal then 1 else 0;

...

countn = if moden = Nominal then 1 else 0;

count = count1 + . . . + countn

−→ maximize count at each execution step



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Control objectives (contd)

Synthesis objective: no program on attacked PLCs

enforce

p∧
i=1

¬plc availi ⇒ (dur plci = 0)

Synthesis objective: dependencies between safe/emergency stops modes

enforce (modei = Safe)⇒ (modej = Safe)

One-step optimization: maximize Nominal modes
count1 = if mode1 = Nominal then 1 else 0;

...

countn = if moden = Nominal then 1 else 0;

count = count1 + . . . + countn

−→ maximize count at each execution step



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Simulation example

Use-case scenario: 3 programs on 2 PLCs

alarm1

alarm2

critical wait1

critical wait2

critical wait3

mode1 Nominal Safe

ex loc1 PLC1

mode2 Nominal Degraded

ex loc2 PLC1 PLC2

mode3 Nominal

ex loc3 PLC2
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Scalability

Synthesis time for n programs, running on n PLCs
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Conclusion

Conclusion

Approach for the cybersecurity of Industrial Control Systems

Automated reaction by self-protection to attacks

Automatically produced controller by controller synthesis

Perspectives

use of modularity, or hierarchical/distributed controllers to handle
scalability

larger size use-case experiment

consider possible attacks on communication between the
self-protection manager and PLCs
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Lig, Université GrenobIe AIpes, etc.

Synchron 2021



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.
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(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ? This is not possible.

My (modified) program is nondeter-
ministic. Can you please constrain it
so that it satisfies the property P ? This is not possible.

My (modified) program is nondeter-
ministic. Can you please constrain it
so that it satisfies the property P ? This is not possible.
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Example: delayable tasks

node delayable(r,c,e:bool) returns (act:bool)

let

automaton

state Idle

do act = false

unless (r & c) then Active

| r then Wait

state Wait

do act = false

unless c then Active

state Active

do act = true

unless e then Idle

end

tel

delayable(r , c , e) = (act)

Idle

act = false

Active

act = true

Wait

act = false

r ∧ ce

r ∧ ¬c

c
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Example (cont’d)

Set of n exlusive delayable tasks

ntasks(r1, . . . , rn, e1, . . . , en)
= (a1, . . . , an)

ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an

assume true

enforce ¬(ca1 ∨ . . . ∨ can−1)

with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)
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Example: composition

main(r1, . . . , r2n, e1, . . . , e2n)
= (a1, . . . , a2n)

ca1 = a1 ∧ (a2 ∨ . . . ∨ a2n)
. . .
ca2n−1 = a2n−1 ∧ a2n

assume true

enforce ¬(ca1 ∨ . . . ∨ ca2n−1)

with ∅

(a1, . . . , an) = ntasks(r1, . . . , rn, e1, . . . , en)
(an+1, . . . , a2n) = ntasks(rn+1, . . . , r2n, en+1, . . . , e2n)

−→ the contract of ntasks is not controllable enough to enforce the main

contract



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example (refinement, naive version)

Contract refinement for composition of several ntasks components:

ntasks(c, r1, . . . , rn, e1, . . . , en)
= (a1, . . . , an)

ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an
one = a1 ∨ . . . ∨ an

assume true

enforce ¬(ca1 ∨ . . . ∨ can−1) ∧ (c ∨ ¬one)

with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)
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(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.
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(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

But... The constrained program is
stuck in the initial state!
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Example: composition, 2nd try

main(r1, . . . , r2n, e1, . . . , e2n)
= (a1, . . . , a2n)

ca1 = a1 ∧ (a2 ∨ . . . ∨ a2n)
. . .
ca2n−1 = a2n−1 ∧ a2n

assume true

enforce ¬(ca1 ∨ . . . ∨ ca2n−1)

with c

(a1, . . . , an) = ntasks(c, r1, . . . , rn, e1, . . . , en)
(an+1, . . . , a2n) = ntasks(¬c, rn+1, . . . , r2n, en+1, . . . , e2n)

−→ Synthesis succeed, but the controllers of ntasks cannot allow the
tasks to go into the active state !
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Example (refinement, correct version)

Use of environment hypothesis to allow more permissive behaviours:

ntasks(c, r1, . . . , rn, e1, . . . , en) = (a1, . . . , an)
ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an
one = a1 ∨ . . . ∨ an
pone = false fby one

pc = false fby c

ppc = false fby pc

atleast2 = ¬(¬ppc ∧ pc ∧ ¬c)
assume (pone⇒ c) ∧ atleast2

enforce ¬(ca1 ∨ . . . ∨ can−1) ∧ (¬c⇒ ¬one)
with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)



Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Diagnosis problems (ongoing work)

Synthesis can fail: information provided to the programmer?

model-checking/verification tools: path of input values leading do fault
states
controller synthesis: dealing with controllable inputs?
−→ tree of uncontrollable/controllable input values

Over-constrained controller

Information to the programmer: set of reachable states? set of
“relevant” reachable states?

Issues with:

modularity (what if synthesis fails because of contracts of subnodes?)
abstractions (synthesis on over-approximations)
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Actual conclusion (or perspectives?)

Why/in which cases use Heptagon/BZR and controller synthesis?

It is fun!

Do automatically part of the programming work: useful in

Closed systems
Where part of the problem is combinatorics
Where system can be easily modelled as Boolean/basic numerical
equations

Why you shouldn’t actually use it?

Comparison with real-time scheduling / constraint programming not
clear (TBD)

Under capitalism, trying to automate other one’s jobs can be a bad
idea

Controller synthesis is not climate-friendly

... and no control on the rebound effect.
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