
Discrete Control of Response for Cybersecurity in
Industrial Control

Gwenaël Delaval, Ayan Hore, Stéphane Mocanu,
Lucie Muller, Eric Rutten

Lig, Université GrenobIe AIpes, lnria, Grenoble lNP

Synchron 2021

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Cybersecurity in Industrial Control Systems

Industrial Control Systems
(ICS): critical infrastructure

Need for cybersecurity

Control of a response
mechanism to potential attacks

Proposal: use of controller
synthesis to produce
automatically a controller for
this response mechanism

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Controlled ICS

Industrial control system:

composed of Remote Terminal Units (RTU), connected with sensors
and actuators of the physical process

Programmable Logic Controllers (PLC)

PLCs and RTUs are connected by a LAN

PLCs run programs controlling the RTUs (possibly several programs
by PLC)

a2l

PLC1 PLC2

o4

i4

RTU21

o3

i3

subsystem1

s2n

subsystem2

LAN

RTU22

a1ks1j

RTU11

o2

o1
i1 i2a

i2b

s2m

Attacks on PLCs −→ need for dynamic reconfigurations

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Controlled ICS

Industrial control system:

composed of Remote Terminal Units (RTU), connected with sensors
and actuators of the physical process

Programmable Logic Controllers (PLC)

PLCs and RTUs are connected by a LAN

PLCs run programs controlling the RTUs (possibly several programs
by PLC)

a2l

PLC1 PLC2

o4

i4

RTU21

o3

i3

subsystem1

s2n

subsystem2

LAN

RTU22

a1ks1j

RTU11

o2

o1
i1 i2a

i2b

s2m

Attacks on PLCs −→ need for dynamic reconfigurations

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Responses to attacks

What kind of response to attacks/alarms?

Type of attacks considered: alarms on PLCs, triggered by an Intrusion
Detection System (IDS)

Dynamic reconfigurations:

isolation of nodes on the LAN
execution location of programs on PLCs
execution modes: Nominal, Degraded, Safe

Execution modes ⇒ different execution times

Objectives

execution of programs on non-alarmed PLCs

keep programs in Nominal or Degraded modes as long as possible

bound execution time on each PLC

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Responses to attacks

What kind of response to attacks/alarms?

Type of attacks considered: alarms on PLCs, triggered by an Intrusion
Detection System (IDS)

Dynamic reconfigurations:

isolation of nodes on the LAN
execution location of programs on PLCs
execution modes: Nominal, Degraded, Safe

Execution modes ⇒ different execution times

Objectives

execution of programs on non-alarmed PLCs

keep programs in Nominal or Degraded modes as long as possible

bound execution time on each PLC

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Cybersecurity as a Control Problem

Closing the loop:

inputs: alarms from the IDS

outputs: isolation of nodes of the LAN, modes and execution location
of programs

state: current execution modes/location of programs

ex loci

self-protection
manager

ICS

IDS

alarmi

PLCi

isolationi

LAN

states
cwi
swi

ei

programs
modei

Combinatorics of solutions ⇒ controller difficult to program “manually”

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Heptagon/BZR

Automation of controller generation: use of Heptagon/BZR

Managed system modelled as automata and (synchronous) dataflow
equations

Controllable variables defined at runtime by a synthesized controller,
to enforce synthesis objectives: invariant temporal properties

Controller synthesized offline

controller

automaton model

managed system

state +
uncont. inputs controllable vars

monitor
(uncontrollable inputs)

execute (outputs)

Heptagon/BZR program

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Classical design cycle

Programmer Model-checker

Does my program satisfy the property P ?

No.

Does my (modified) program satisfy the property P ?

No.

Does my (modified) program satisfy the property P ?

No.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Synchronous programming in Heptagon/BZR

node alloc(r : bool) returns (g : bool)

let

automaton

state Idle

do g = false until r then Alloc

state Alloc

do g = true until (not r) then Idle

end

tel

node main(r0,r1 : bool) returns (g0,g1 : bool)

let

g0 = inlined alloc(r0);

g1 = inlined alloc(r1);

tel

main(r0, r1) = (g0, g1)

Idle

g0 = false

Alloc

g0 = true

r0¬r0

Idle

g1 = false

Alloc

g1 = true

r1¬r1

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 1 1 1 1 . . .

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

node main(r0,r1 : bool) returns (g0,g1 : bool)

let

g0 = inlined alloc(r0);

g1 = inlined alloc(r1);

tel

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 1 1 1 1 . . .

contract mechanism

nondeterminism: controllable variables

constraint: controller computed by discrete controller synthesis

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

node main(r0,r1 : bool) returns (g0,g1 : bool)

contract

assume true

enforce not (g0 & g1)

let

g0 = inlined alloc(r0);

g1 = inlined alloc(r1);

tel

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 1 1 1 1 . . .

contract mechanism

nondeterminism: controllable variables

constraint: controller computed by discrete controller synthesis

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

node main(r0,r1 : bool) returns (g0,g1 : bool)

contract

assume true

enforce not (g0 & g1) with (c0,c1:bool)

let

g0 = inlined alloc(r0 & c0);

g1 = inlined alloc(r1 & c1);

tel

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 0 0 1 1 . . .

contract mechanism

nondeterminism: controllable variables

constraint: controller computed by discrete controller synthesis

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

node main(r0,r1 : bool) returns (g0,g1 : bool)

var c0,c1:bool

let

(c0,c1) = controller(r0,r1);

g0 = inlined alloc(r0 & c0);

g1 = inlined alloc(r1 & c1);

tel

t 1 2 3 4 5 6 7 8 . . .
r0 0 1 1 1 1 0 0 0 . . .
r1 0 0 0 1 1 1 1 1 . . .
g0 0 0 1 1 1 1 0 0 . . .
g1 0 0 0 0 0 0 1 1 . . .

contract mechanism

nondeterminism: controllable variables

constraint: controller computed by discrete controller synthesis

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Method for obtention of response mechanism controller

Using Heptagon/BZR:

model PLCs and programs as automata + dataflow equations

express response objectives as synthesis objectives

compile and synthesize the controller

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Modelling ICS

Problem stated as:

a set of n control programs Pi , i = 1, . . . , n;

a set of p PLCs Cj , j = 1, . . . , p;

maxj is the maximum cycle duration of PLC Cj ;

nij is the duration of the nominal version of program Pi on PLC Cj ;

dij is the duration of the degraded version of program Pi on PLC Cj .

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

PLC model

node plc(alarm:bool) = (plc_avail:bool)

Available

plc avail = true

Attacked

plc avail = false

alarm

Input: alarm, true when the IDS detects an alarm for this PLC

Output: plc avail, true when the PLC is “available” (until first
alarm)

Parallel instances for each PLC:

plc_avail1 = plc(alarm1);

...

plc_availp = plc(alarmp);

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

PLC model

node plc(alarm:bool) = (plc_avail:bool)

Available

plc avail = true

Attacked

plc avail = false

alarm

Input: alarm, true when the IDS detects an alarm for this PLC

Output: plc avail, true when the PLC is “available” (until first
alarm)

Parallel instances for each PLC:

plc_avail1 = plc(alarm1);

...

plc_availp = plc(alarmp);

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Program model

node prog<<dn1, . . . , dnp, dd1, . . . , ddp>>

(c_exec_loc:arch_element;

deg,safe,cw,sw:bool)

= (mode:prog_mode;exec_loc:arch_element;

dur1, . . . , durp:int)

N

mode = Nominal

exec_loc = c_exec_loc ->if cw then pre exec_loc

else c_exec_loc

duri = if exec_loc = PLCi then dni else 0

S

mode = Safe

dur plci = 0

D

mode = Degraded

exec_loc = c_exec_loc

duri = if exec_loc = PLCi then ddi else 0

deg and (not cw or sw)
safe

safe

states corresponding to program modes: Nominal (N), Degraded (D),
Safe (S)

input c_exec_loc: controllable variable, control the location of the
program

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Program model — instances

Node prog instantiated for each program:

(mode1,ex_loc1,dur11,. . .,dur1p) =

prog<<n11,. . .,n1p,d11,. . .,d1p>> (el1,cd1,es1 or cs1,cw1,sw1);

...

(moden,ex_locn,durn1,. . .,durnp) =

prog<<nn1,. . .,nnp,dn1,. . .,dnp>> (eln,cdn,esn or csn,cwn,swn);

In this instantiation:

eli are controllable variables for execution locations of program i

cdi and csi are controllable variables for switching programs to
degraded or safe modes

durij is:

0 if program i is not executed on PLC j ;
duration of current mode, if program i is executed on PLC j

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Global cost model and control objectives

Computation of total duration of programs on each PLC:

dur_plc1 = dur11 + . . . + durn1

...

dur_plcp = dur1p + . . . + durnp

Synthesis objective: cycle duration on PLCs

Duration of execution of programs on PLCs should be less than the cycle
time of this PLC

enforce

p∧
i=1

dur plci ≤ maxi

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Global cost model and control objectives

Computation of total duration of programs on each PLC:

dur_plc1 = dur11 + . . . + durn1

...

dur_plcp = dur1p + . . . + durnp

Synthesis objective: cycle duration on PLCs

Duration of execution of programs on PLCs should be less than the cycle
time of this PLC

enforce

p∧
i=1

dur plci ≤ maxi

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Control objectives (contd)

Synthesis objective: no program on attacked PLCs

enforce

p∧
i=1

¬plc availi ⇒ (dur plci = 0)

Synthesis objective: dependencies between safe/emergency stops modes

enforce (modei = Safe)⇒ (modej = Safe)

One-step optimization: maximize Nominal modes
count1 = if mode1 = Nominal then 1 else 0;

...

countn = if moden = Nominal then 1 else 0;

count = count1 + . . . + countn

−→ maximize count at each execution step

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Control objectives (contd)

Synthesis objective: no program on attacked PLCs

enforce

p∧
i=1

¬plc availi ⇒ (dur plci = 0)

Synthesis objective: dependencies between safe/emergency stops modes

enforce (modei = Safe)⇒ (modej = Safe)

One-step optimization: maximize Nominal modes
count1 = if mode1 = Nominal then 1 else 0;

...

countn = if moden = Nominal then 1 else 0;

count = count1 + . . . + countn

−→ maximize count at each execution step

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Simulation example

Use-case scenario: 3 programs on 2 PLCs

alarm1

alarm2

critical wait1

critical wait2

critical wait3

mode1 Nominal Safe

ex loc1 PLC1

mode2 Nominal Degraded

ex loc2 PLC1 PLC2

mode3 Nominal

ex loc3 PLC2

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Scalability

Synthesis time for n programs, running on n PLCs

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7

S
y
n
th

e
si

s
ti

m
e
 (

s)

n (number of programs/PLC)

With one-step optimization
Without optimization

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Conclusion

Conclusion

Approach for the cybersecurity of Industrial Control Systems

Automated reaction by self-protection to attacks

Automatically produced controller by controller synthesis

Perspectives

use of modularity, or hierarchical/distributed controllers to handle
scalability

larger size use-case experiment

consider possible attacks on communication between the
self-protection manager and PLCs

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Conclusion

Conclusion

Approach for the cybersecurity of Industrial Control Systems

Automated reaction by self-protection to attacks

Automatically produced controller by controller synthesis

Perspectives

use of modularity, or hierarchical/distributed controllers to handle
scalability

larger size use-case experiment

consider possible attacks on communication between the
self-protection manager and PLCs

Why (not) use Heptagon/BZR?

Gwenaël Delaval

Lig, Université GrenobIe AIpes, etc.

Synchron 2021

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ? This is not possible.

My (modified) program is nondeter-
ministic. Can you please constrain it
so that it satisfies the property P ? This is not possible.

My (modified) program is nondeter-
ministic. Can you please constrain it
so that it satisfies the property P ? This is not possible.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example: delayable tasks

node delayable(r,c,e:bool) returns (act:bool)

let

automaton

state Idle

do act = false

unless (r & c) then Active

| r then Wait

state Wait

do act = false

unless c then Active

state Active

do act = true

unless e then Idle

end

tel

delayable(r , c , e) = (act)

Idle

act = false

Active

act = true

Wait

act = false

r ∧ ce

r ∧ ¬c

c

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example (cont’d)

Set of n exlusive delayable tasks

ntasks(r1, . . . , rn, e1, . . . , en)
= (a1, . . . , an)

ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an

assume true

enforce ¬(ca1 ∨ . . . ∨ can−1)

with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example: composition

main(r1, . . . , r2n, e1, . . . , e2n)
= (a1, . . . , a2n)

ca1 = a1 ∧ (a2 ∨ . . . ∨ a2n)
. . .
ca2n−1 = a2n−1 ∧ a2n

assume true

enforce ¬(ca1 ∨ . . . ∨ ca2n−1)

with ∅

(a1, . . . , an) = ntasks(r1, . . . , rn, e1, . . . , en)
(an+1, . . . , a2n) = ntasks(rn+1, . . . , r2n, en+1, . . . , e2n)

−→ the contract of ntasks is not controllable enough to enforce the main

contract

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example (refinement, naive version)

Contract refinement for composition of several ntasks components:

ntasks(c, r1, . . . , rn, e1, . . . , en)
= (a1, . . . , an)

ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an
one = a1 ∨ . . . ∨ an

assume true

enforce ¬(ca1 ∨ . . . ∨ can−1) ∧ (c ∨ ¬one)

with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

But... The constrained program is
stuck in the initial state!

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

But... The constrained program is
stuck in the initial state!

Well... isn’t the prop-
erty satisfied or not?

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Sure: here is the constraint.

But... The constrained program is
stuck in the initial state!

Well... isn’t the prop-
erty satisfied or not?

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example: composition, 2nd try

main(r1, . . . , r2n, e1, . . . , e2n)
= (a1, . . . , a2n)

ca1 = a1 ∧ (a2 ∨ . . . ∨ a2n)
. . .
ca2n−1 = a2n−1 ∧ a2n

assume true

enforce ¬(ca1 ∨ . . . ∨ ca2n−1)

with c

(a1, . . . , an) = ntasks(c, r1, . . . , rn, e1, . . . , en)
(an+1, . . . , a2n) = ntasks(¬c, rn+1, . . . , r2n, en+1, . . . , e2n)

−→ Synthesis succeed, but the controllers of ntasks cannot allow the
tasks to go into the active state !

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Example (refinement, correct version)

Use of environment hypothesis to allow more permissive behaviours:

ntasks(c, r1, . . . , rn, e1, . . . , en) = (a1, . . . , an)
ca1 = a1 ∧ (a2 ∨ . . . ∨ an)
. . .
can−1 = an−1 ∧ an
one = a1 ∨ . . . ∨ an
pone = false fby one

pc = false fby c

ppc = false fby pc

atleast2 = ¬(¬ppc ∧ pc ∧ ¬c)
assume (pone⇒ c) ∧ atleast2

enforce ¬(ca1 ∨ . . . ∨ can−1) ∧ (¬c⇒ ¬one)
with c1, . . . , cn

a1 = inlined delayable(r1, c1, e1)
. . .
an = inlined delayable(rn, cn, en)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Diagnosis problems (ongoing work)

Synthesis can fail: information provided to the programmer?

model-checking/verification tools: path of input values leading do fault
states
controller synthesis: dealing with controllable inputs?
−→ tree of uncontrollable/controllable input values

Over-constrained controller

Information to the programmer: set of reachable states? set of
“relevant” reachable states?

Issues with:

modularity (what if synthesis fails because of contracts of subnodes?)
abstractions (synthesis on over-approximations)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Diagnosis problems (ongoing work)

Synthesis can fail: information provided to the programmer?

model-checking/verification tools: path of input values leading do fault
states
controller synthesis: dealing with controllable inputs?
−→ tree of uncontrollable/controllable input values

Over-constrained controller

Information to the programmer: set of reachable states? set of
“relevant” reachable states?

Issues with:

modularity (what if synthesis fails because of contracts of subnodes?)
abstractions (synthesis on over-approximations)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Diagnosis problems (ongoing work)

Synthesis can fail: information provided to the programmer?

model-checking/verification tools: path of input values leading do fault
states
controller synthesis: dealing with controllable inputs?
−→ tree of uncontrollable/controllable input values

Over-constrained controller

Information to the programmer: set of reachable states? set of
“relevant” reachable states?

Issues with:

modularity (what if synthesis fails because of contracts of subnodes?)
abstractions (synthesis on over-approximations)

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Actual conclusion (or perspectives?)

Why/in which cases use Heptagon/BZR and controller synthesis?

It is fun!

Do automatically part of the programming work: useful in

Closed systems
Where part of the problem is combinatorics
Where system can be easily modelled as Boolean/basic numerical
equations

Why you shouldn’t actually use it?

Comparison with real-time scheduling / constraint programming not
clear (TBD)

Under capitalism, trying to automate other one’s jobs can be a bad
idea

Controller synthesis is not climate-friendly

... and no control on the rebound effect.

Context Control for Cybersecurity Models Evaluation Conclusion Post-conclusion

Actual conclusion (or perspectives?)

Why/in which cases use Heptagon/BZR and controller synthesis?

It is fun!

Do automatically part of the programming work: useful in

Closed systems
Where part of the problem is combinatorics
Where system can be easily modelled as Boolean/basic numerical
equations

Why you shouldn’t actually use it?

Comparison with real-time scheduling / constraint programming not
clear (TBD)

Under capitalism, trying to automate other one’s jobs can be a bad
idea

Controller synthesis is not climate-friendly

... and no control on the rebound effect.

	Context
	Cybersecurity in Industrial Control Systems

	Control for Cybersecurity
	Cybersecurity as a Control Problem
	Heptagon/BZR presentation
	Synchronous languages & Heptagon
	Method

	Modelling ICS
	Global presentation
	PLC model
	Programs model
	Global cost and Objectives

	Evaluation
	Simulation
	Scalability

	Conclusion
	Post-conclusion
	
	Example — first version
	Example — second version
	Example — 3rd version

