Discrete Control of Response for Cybersecurity in

Industrial Control

Gwenaél Delaval, Ayan Hore, Stéphane Mocanu,
Lucie Muller, Eric Rutten

Lig, Université Grenoble Alpes, Inria, Grenoble INP

Synchron 2021

Context
®00

Cybersecurity in Industrial Control Systems

@ Industrial Control Systems
(ICS): critical infrastructure

@ Need for cybersecurity

@ Control of a response
mechanism to potential attacks

@ Proposal: use of controller
synthesis to produce
automatically a controller for
this response mechanism

Context
oceo

Controlled ICS

Industrial control system:

e composed of Remote Terminal Units (RTU), connected with sensors
and actuators of the physical process

@ Programmable Logic Controllers (PLC)

@ PLCs and RTUs are connected by a LAN

@ PLCs run programs controlling the RTUs (possibly several programs
by PLC)

Context
oceo

Controlled ICS

Industrial control system:

e composed of Remote Terminal Units (RTU), connected with sensors
and actuators of the physical process

@ Programmable Logic Controllers (PLC)

@ PLCs and RTUs are connected by a LAN

@ PLCs run programs controlling the RTUs (possibly several programs
by PLC)

Attacks on PLCs — need for dynamic reconfigurations

Context
ooe

Responses to attacks

What kind of response to attacks/alarms?
@ Type of attacks considered: alarms on PLCs, triggered by an Intrusion
Detection System (IDS)
@ Dynamic reconfigurations:

e isolation of nodes on the LAN
e execution location of programs on PLCs
e execution modes: Nominal, Degraded, Safe

@ Execution modes = different execution times

Context
ooe

Responses to attacks

What kind of response to attacks/alarms?
@ Type of attacks considered: alarms on PLCs, triggered by an Intrusion
Detection System (IDS)
@ Dynamic reconfigurations:

e isolation of nodes on the LAN
e execution location of programs on PLCs
e execution modes: Nominal, Degraded, Safe

@ Execution modes = different execution times

Objectives

@ execution of programs on non-alarmed PLCs
@ keep programs in Nominal or Degraded modes as long as possible

@ bound execution time on each PLC

Control for Cybersecurity
°

Cybersecurity as a Control Problem

Closing the loop:
@ inputs: alarms from the IDS
@ outputs: isolation of nodes of the LAN, modes and execution location
of programs
@ state: current execution modes/location of programs

g ———>

self-protection
manager

programs
mode;
ex_loc;

isolation;

alarm;

”

Combinatorics of solutions = controller difficult to program “manually

Control for Cybersecurity
®00

Heptagon/BZR

Automation of controller generation: use of Heptagon/BZR
@ Managed system modelled as automata and (synchronous) dataflow

equations
@ Controllable variables defined at runtime by a synthesized controller,
to enforce synthesis objectives: invariant temporal properties

@ Controller synthesized offline

Heptagon/BZR program

state +
controllable vars

uncont. inputs

_ automaton model
monitor
colape execute (outputs)
(uncontrollable inputs) managed system

Control for Cybersecurity
oeo

Classical design cycle

Programmer

Does my program satisfy the property P ?

Does my (modified) program satisfy the property P ?

Does my (modified) program satisfy the property P 7

Model-checker
(
(
(

Control for Cybersecurity

ooe

Heptagon/BZR design cycle

Programmer

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

Control for Cybersecurity
°0

Synchronous programming in Heptagon/BZR

node alloc(r : bool) returns (g : bool) .
let main(ro, r1) = (8o, 81)
automaton I
state Idle g = false | g = false
do g = false until r then Alloc :
state Alloc I
do g = true until (not r) then Idle |
end !
tel — N n
!
!
node main(r0,rl : bool) returns (g0,gl : bool) :
let I
g0 = inlined alloc(r0); |
gl = inlined alloc(rl); 8o = true ! &1 = true
tel
t 1 2 3 4 5 6 7 8
n|0 1 1 1 1 0 0 O
n 0 0 0 1 1 1 1 1
|0 0o 1 1 1 1 0 o0
g |0 0 0 0 1 1 1 1

Control for Cybersecurity
oce

node main(r0,rl : bool) returns (g0,gl : bool)

let

g0 = inlined alloc(x0);
gl = inlined alloc(rl);
tel

t |1 2 3 4 5 6 7 8
n 0 1 1 1 1 0 0 0
nlo o o 1 1 1 1 1
© |0 0 1 1 1 1 0 0
g |0 0 0 0 1 1 1 1

Control for Cybersecurity
oce

node main(r0,rl : bool) returns (g0,gl : bool)
contract
assume true
enforce not (g0 & gl)

let
g0 = inlined alloc(x0);
gl = inlined alloc(rl);
tel

t |1 2 3 4 5 6 7 8
n 0 1 1 1 1 0 0 0
nlo o o 1 1 1 1 1
© |0 0 1 1 1 1 0 0
g |0 0 0 0 1 1 1 1

@ contract mechanism

Control for Cybersecurity
oce

node main(r0,rl : bool) returns (g0,gl : bool)
contract
assume true
enforce not (g0 & gl) with (cO,cl:bool)

let
g0 = inlined alloc(x0 & cO0);
gl = inlined alloc(rl & cl);
tel

t |1 2 3 4 5 6 7 8
n]0 1 1 1 1 0 0 0
nlo o o 1 1 1 1 1
© |0 0 1 1 1 1 0 0
gs |0 0 0 0 0 0 1 1

@ contract mechanism

@ nondeterminism: controllable variables

Control for Cybersecurity
oce

node main(r0,rl : bool) returns (g0,gl : bool)

var c0,cl:bool
let
(c0,cl1) = controller(r0,rl);
g0 = inlined alloc(x0 & cO0);
gl = inlined alloc(rl & cl);
tel

t |1 2 3 4 5 6 7 8
n]0 1 1 1 1 0 0 0
nlo o o 1 1 1 1 1
© |0 0 1 1 1 1 0 0
gs |0 0 0 0 0 0 1 1

@ contract mechanism
@ nondeterminism: controllable variables

@ constraint: controller computed by discrete controller synthesis

Control for Cybersecurity
°

Method for obtention of response mechanism controller

Using Heptagon/BZR:
@ model PLCs and programs as automata + dataflow equations
@ express response objectives as synthesis objectives

@ compile and synthesize the controller

Models
°

Modelling 1CS

Problem stated as:

@ a set of n control programs P;,i=1,...,n;

asetof pPLCs Cj,j=1,...,p;

max; is the maximum cycle duration of PLC Cj;

nj; is the duration of the nominal version of program P; on PLC Cj;

@ dj; is the duration of the degraded version of program P; on PLC ;.

Models
°

PLC model

node plc(alarm:bool) = (plc_avail:bool)

Available

plc_avail = true plc_avail = false

@ Input: alarm, true when the IDS detects an alarm for this PLC

e Output: plc_avail, true when the PLC is “available” (until first
alarm)

Models
°

PLC model

node plc(alarm:bool) = (plc_avail:bool)‘

Available alarm

plc_avail = true plc_avail = false

@ Input: alarm, true when the IDS detects an alarm for this PLC

e Output: plc_avail, true when the PLC is “available” (until first
alarm)

Parallel instances for each PLC:

plc_avail; = plc(alarm;);

plc_avail, = plc(alarmy);

Program model

node prog<<dmy,...,dnp,ddy,...,dd,>>
(c_exec_loc:arch_element;
deg,safe,cw,sw:bool)
= (mode:prog_mode ;exec_loc:arch_element;

dury,..., durp:int)

mode = Nominal
exec_loc = c_exec_loc ->if cw then pre exec_loc

else c_exec_loc
dur; = if exec_loc = PLC; then dn; else 0O

deg and (not cw or sw)

mode = Degraded
exec_loc = c_exec_loc
dur; = if exec_loc = PLC; then dd; else 0O

mode = Safe
dur_plc; =0

@ states corresponding to program modes: Nominal (N), Degraded (D),
Safe (S)

@ input c_exec_loc: controllable variable, control the location of the
program

Program model — instances

Node prog instantiated for each program:

(mode; ,ex_locy,duryy,...,dury,) =

prog<<nii,...,Np,d11,...,dp>> (ely,cdi,es; or csi,cwi,swy);

(mode,,ex_loc,,dur,s,...,dur,,) =
Prog<<npi,...,Npp,dni,...,dnp>> (el,,cd,,es, or cs,,CW,,SWp);

’

In this instantiation:
@ el; are controllable variables for execution locations of program i
@ cd; and cs; are controllable variables for switching programs to
degraded or safe modes
@ durj is:

o 0 if program i is not executed on PLC j;
e duration of current mode, if program i is executed on PLC j

Global cost model and control objectives

Computation of total duration of programs on each PLC:

dur_plc; = dury; + ... + durp

dur_plc, = dury, + ... + durg,

Global cost model and control objectives

Computation of total duration of programs on each PLC:

dur_plc; = dury; + ... + durp

dur_plc, = dury, + ... + durg,

Synthesis objective: cycle duration on PLCs

Duration of execution of programs on PLCs should be less than the cycle
time of this PLC

p
enforce /\ dur_plc; < max;
i=1

Control objectives (contd)

Synthesis objective: no program on attacked PLCs
P

enforce /\ —plc_avail; = (dur_plc; =0)
i=1

Synthesis objective: dependencies between safe/emergency stops modes

enforce (mode; = Safe) = (mode; = Safe)

Control objectives (contd)

Synthesis objective: no program on attacked PLCs
P

enforce /\ —plc_avail; = (dur_plc; =0)
i=1

Synthesis objective: dependencies between safe/emergency stops modes

enforce (mode; = Safe) = (mode; = Safe)

One-step optimization: maximize Nominal modes
count; = if mode; = Nominal then 1 else O0;

count, if mode, = Nominal then 1 else 0;
count = count; + ... + count,

— maximize count at each execution step

Evaluation
°

Simulation example

Use-case scenario: 3 programs on 2 PLCs

alarm1 []
alarm?2

critical_waitl |—|—

critical_wait2

critical_wait3

mOde]. Nominal | Safe
ex_locl PLC1 [
mode?2 Nominal | Degraded
ex_loc2 PLCL | PLC2
mode3 Nominal

ex_loc3 pLC2

Evaluation
°

Scalability

Synthesis time for n programs, running on n PLCs

10000

T T T T
With one-step optimization —+—
Without optimization —>—

1000 A

100

10

Synthesis time (s)

0.1+

n (number of programs/PLC)

Conclusion
°

Conclusion

@ Approach for the cybersecurity of Industrial Control Systems
@ Automated reaction by self-protection to attacks

@ Automatically produced controller by controller synthesis

Conclusion
°

Conclusion

@ Approach for the cybersecurity of Industrial Control Systems
@ Automated reaction by self-protection to attacks

@ Automatically produced controller by controller synthesis

@ use of modularity, or hierarchical /distributed controllers to handle
scalability

@ larger size use-case experiment

@ consider possible attacks on communication between the
self-protection manager and PLCs

Why (not) use Heptagon/BZR?

Gwenaél Delaval

Lig, Université Grenoble Alpes, etc.

Synchron 2021

Post-conclusion

[le]

Heptagon/BZR design cycle

Programmer

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

(Actual) Heptagon/BZR design cycle

Example: delayable tasks

node delayable(r,c,e:bool) returns (act:bool)

let
automaton
state Idle
do act = false
unless (r & c) then Active
| r then Wait
state Wait
do act = false
unless c¢ then Active
state Active
do act = true
unless e then Idle

end
tel

Post-conclusion
000

delayable(r, ¢, €) = (act)

act = false act= false

@ s @

act = true

Post-conclusion
ceo

Example (cont'd)

Set of n exlusive delayable tasks

ntasks(ri,...,rp,€1,...,€p)

=(a1,...,an)
cag=a;A(aaV...Va,)

cap—1 =3ap-1/Nan

assume true
enforce —=(ca; V...V ca_1)

with cy,...,¢Cp

a; = inlined delayable(ry,c1,e1)

ap, = inlined delayable(r,, ¢y, ep)

Post-conclusion
ocoe

Example: composition

main(ry,...,ran, €1,...,€2n)

= (a1,...,a2n)
cap =ai1 A (a2 V... Vag,)

Capp—1 = azp—1/\a2p
assume true
enforce —(cay V...V cazs_1)

with 0
(a1,...,a,) = ntasks(ri,...,rp,€1,...,€p)
(an+1, e a2n) = ntasks(rn+1, e T2, €041, - 762,,)

— the contract of ntasks is not controllable enough to enforce the main
contract

Post-conclusion
®00

Example (refinement, naive version)

Contract refinement for composition of several ntasks components:

ntasks(c,r1,...,Tpn,€1,...,€pn)

=(a1,...,an)
cag=ai1A(a2V...Va)

cap-1 =2ap-1/N\an
one =aj1 V...Va,
assume true
enforce —=(ca; V...V cas_1) A (cV —one)
with c1,...,¢Cp

a; = inlined delayable(ri,c1,e1)

ap, = inlined delayable(rp, ¢y, ep)

Post-conclusion

oeo

(Actual) Heptagon/BZR design cycle

Programmer

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P 7

Post-conclusion
oeo

(Actual) Heptagon/BZR design cycle

My program is nondeterministic.
Can you please constrain it so that
it satisfies the property P ?

But... The constrained program is
stuck in the initial state!

(Actual) Heptagon/BZR design cycle

Post-conclusion
oeo

(Actual) Heptagon/BZR design cycle

Programmer BZR chain tool

My program is nondeterministic.
Can you please constrain it so that Sure: here is the constraint.
it satisfies the property P ?

But... The constrained program is Well... isn't the prop-
stuck in the initial state! erty satisfied or not?

My job here is done.

Post-conclusion
ooe

Example: composition, 2nd try

main(ry,...,T2n, €1,...,€2n)

= (a1,...,an)
cag =aj A(ax V... Vag)

capp—1 = azp—1 N\ agy
assume true

enforce —(ca; V...V cag_1)

with c
(ai1,...,an) = ntasks(c,r1,...,rp,€1,...,€n)
(2n+1,---,a2n) = ntasks(—c,Tpy1, ..., T2n, €ntls - -, €2n)

— Synthesis succeed, but the controllers of ntasks cannot allow the
tasks to go into the active state !

Post-conclusion
®00

Example (refinement, correct version)

Use of environment hypothesis to allow more permissive behaviours:

ntasks(c,r1,...,Tn,€1,...,€5) = (a1,...,25)
cag=ajA(apV...Va,)

cap—1 = an-1/Na,

one =a; V...Va,

pone = false fby one

pc = false fby c

ppc = false fby pc

atleast2 = —(—ppc A pc A —c)
assume (pone = c) A atleast?2

enforce —(ca; V...V cay_1) A (—c = —one)
with c1,...,¢Cp

a; = inlined delayable(ry,cy,e1)

a, = inlined delayable(r,, cp,€p)

Post-conclusion
oceo

Diagnosis problems (ongoing work)

@ Synthesis can fail: information provided to the programmer?
o model-checking/verification tools: path of input values leading do fault

states
o controller synthesis: dealing with controllable inputs?

e — tree of uncontrollable/controllable input values

Post-conclusion
oceo

Diagnosis problems (ongoing work)

@ Synthesis can fail: information provided to the programmer?
o model-checking/verification tools: path of input values leading do fault

states
o controller synthesis: dealing with controllable inputs?

e — tree of uncontrollable/controllable input values

@ Over-constrained controller
o Information to the programmer: set of reachable states? set of
“relevant” reachable states?

Post-conclusion
oceo

Diagnosis problems (ongoing work)

@ Synthesis can fail: information provided to the programmer?

o model-checking/verification tools: path of input values leading do fault
states

o controller synthesis: dealing with controllable inputs?

e — tree of uncontrollable/controllable input values

@ Over-constrained controller

o Information to the programmer: set of reachable states? set of
“relevant” reachable states?

@ lIssues with:

e modularity (what if synthesis fails because of contracts of subnodes?)
o abstractions (synthesis on over-approximations)

Post-conclusion
ocoe

Actual conclusion (or perspectives?)

Why/in which cases use Heptagon/BZR and controller synthesis?

o It is fun!
@ Do automatically part of the programming work: useful in

o Closed systems
o Where part of the problem is combinatorics
o Where system can be easily modelled as Boolean/basic numerical

equations

Post-conclusion
ocoe

Actual conclusion (or perspectives?)

Why/in which cases use Heptagon/BZR and controller synthesis?

o It is fun!
@ Do automatically part of the programming work: useful in
o Closed systems
o Where part of the problem is combinatorics
o Where system can be easily modelled as Boolean/basic numerical
equations

~

Why you shouldn’t actually use it?

e Comparison with real-time scheduling / constraint programming not
clear (TBD)

@ Under capitalism, trying to automate other one's jobs can be a bad
idea

@ Controller synthesis is not climate-friendly

@ ... and no control on the rebound effect.

	Context
	Cybersecurity in Industrial Control Systems

	Control for Cybersecurity
	Cybersecurity as a Control Problem
	Heptagon/BZR presentation
	Synchronous languages & Heptagon
	Method

	Modelling ICS
	Global presentation
	PLC model
	Programs model
	Global cost and Objectives

	Evaluation
	Simulation
	Scalability

	Conclusion
	Post-conclusion
	
	Example — first version
	Example — second version
	Example — 3rd version

