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TwoWorlds

Physical Perceived

car on road sampling (IMU1, GPS, CAN)
road, lane markers sampling (camera), RMS NN
other cars & objects sampling (cameras), KFE NN

Problem: How to relate the two worlds?
How to do so measurably and verifiably?

1Confused by acronym bingo? Check the glossary.
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Partial Answers

I Emerging mathematical traffic models and definitions of
socially acceptable driving behaviour [Shalev-Shwartz
et al., 2018] indicate how much we need to know about
the physical world to make acceptable driving decisions.

I Classical sampling theory tells us how often and how
accurately we have to sample the signals given
assumptions, eg about their rates of change.

I Samplers and controllers can be validated (or even
formally verified).

I Reliability can be improved with the usual techniques
(redundancy and/or ASIL-certified COTS).

Problem: How do we tame NNs, measurably and
verifiably?
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Verified Realisation

Let I, O, and C be sets. Let

f : I −→ O (ground truth)
n : I −→ O× C (neural net)
v : I −→ O× C −→ B (verifier)

be functions. We say that v verifies that n realises f if

n(i) = (o, c) ⇒ v(i)(n(i)) ⇒ f(i) = o ,

for all i ∈ I, o ∈ O, and c ∈ C.

Somewhat similar to the P vs NP distinction, f is generated
by a classical (P) algorithm but way too slow, whereas n
realising f (sometimes) produces the same outputs plus
certificates we can efficiently check with v.
This has also been discovered by Jackson et al. [2021].
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Example: Verified Realisation

Let’s try a simple RMS.
I camera image
O set of lane marker shapes and locations
C shape and location of the road ahead, shape and

location of lane markers, and a grid of non-road and
non-lane marker areas to prove that what’s suggested as
detected is all there is

v checks C against I and the relevant highway code for
the possible shapes of lane marker on the road ahead
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Why is verified realisation often unrealistic?

Problem: Outputs of f and n hardly ever agree exactly.

Instead, we aim for an n that produces outputs that are close
enough.
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Metric Space

Let X be a set. Let d : X2 −→ R≥0. We call d a metric (on
X) and (X,d) a metric space whenever d satisfies all of:

∀x, y ∈ X (d(x, y) = 0 ⇔ x = y) (id)
∀x, y ∈ X (d(x, y) = d(y, x))
∀x, y, z ∈ X (d(x, z) ≤ d(x, y) + d(y, z))

Without too big a loss, the identity of indiscernibles (id) can
be weakened to

∀x ∈ X (d(x, x) = 0) (id’)

to accommodate irrelevant detail in the input space.
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Lipschitz Continuity

Let (X,dX) and (Y,dY) be metric spaces. Let f : X −→ Y.
If there exists a γ ∈ R≥0 such that

∀x, y ∈ X (γ · dX(x, y) ≥ dY(f(x), f(y)))

then f is Lipschitz continuous. The smallest such γ is f’s
Lipschitz constant.

Lipschitz continuous functions map close sources to close
targets.

Lemma
Composition (“;” as well as “‖”) preserves Lipschitz continuity.
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Example: Lipschitz Continuity

Let’s try driving.
I scene descriptions (some canonical rep. of lanes,

objects, trajectories)
O = M× A driving decisions comprising a manœuvre and

target values for long. and lat. acceleration
M = {keep lane,change lane left, . . . ,emergency stop, . . .}
A e.g. vector of floats

Problem: An f : I −→ O that computes driving decisions
can hardly be meaningfully Lipschitz continuous
because M is discrete.

Answer: Change O to distributions over driving
decisions.
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Verified Approximate Realisation

Let (I,dI) and (O,dO) be metric spaces. Let C be a set.
Let

ε > 0

f : I −→ O (Lipschitz continuous g.t.)
n : I −→ O× C (certifying NN)
v : I −→ O× C −→ B (verifier)

v verifies that n ε-realises f if

n(x) = (y, c) ⇒ v(x)(n(x)) ⇒ dO(f(x), y) ≤ ε ,

for all x ∈ I, y ∈ O, and c ∈ C.

Here, a certificate lets us validate that the NN’s output is
close enough to ground truth.
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Example: Verified Approximate Realisation

Let’s try driving again.
I scene descriptions with certainty scores for individual

elements and their trajectories
O = M −→ [0, 1]× A manœuvres mapped to their likelihood

and target values for long. and lat. acceleration
C for each manœuvre m ∈ M, a justification of its score

and the chosen target values
Eg, if n(i) = (o, c) and o(“change lane left”) = (0.9,~a) then c
should indicate one or more objects in i that mandate such a
lane change and, moreover, attest to the safety of it (there is
a lane on the left and we can move safely into it by following
~a).
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Lipschitz Continuous NNs?

Suppose v verifies that n ε-realises the Lipschitz continuous f
and that γ is f’s Lipschitz constant. Let x1, x2 ∈ I and let
(yi, ci) = n(xi) for i = 1, 2.

dO(y1, y2) ≤ dO(y1, f(x1)) + dO(f(x1), f(x2)) + dO(f(x2), y2)
≤ dO(y1, f(x1)) + γdI(x1, x2) + dO(f(x2), y2)
≤ 2ε+ γdI(x1, x2)

For discrete I, define µ = min(dI(I2) \ {0}), i.e., the smallest
non-zero distance in I. Use that to define δ = 2ε

µ + γ.

≤ δdI(x1, x2) , if indeed

we also have that n does not distinguish more inputs than di,
that is, dI(x1, x2) = 0 ⇒ dO(y1, y2) = 0. (A non-issue if we
stuck the the stricter (id).)
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Glossary

ASIL automotive safety integrity level (ASIL), a risk classification
scheme

CAN controller area network, vintage robust vehicle bus (Bosch)

COTS Commercial off-the-shelf, products that are commercially
available and can be bought “as is”

GPS global positioning system, a satellite-based
radionavigation system

IMU inertial movement unit, a motion sensor

KFE kinetic field estimator, an NN to detect objects and their
trajectories in movies

NN neural network

RMS road marker system, an NN to detect road markers in
images
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