
Adventures in Verification
Glorified Ring Buffers

Kai Engelhardt

Ghost Locomotion
Mountain View, CA, USA and Sydney, AU

1

https://driveghost.com/
https://www.gh.st

In SynchronousWorld,Far,Far Away…

…two programs communicate via shared memory

writer
reader

2

In SynchronousWorld,Far,Far Away…

…an IMU1 writing values read in 3s from a 4-slot ring buffer

IMU writes 1 2 3 4 1 2 3

pilot reads 1 2 3 4 1 2

(numbers are ring buffer indices)

1Confused by acronym bingo? Check the glossary.

3

In a Slightly Less SynchronousWorld…

…some shared memory reads clash with writes
but we make up for it by sampling often enough

GPS writes 1 2 3

pilot reads 1 1 1 2 2 2 2 3 3

(numbers are values written/read to the single shared memory
location)

4

Typical Comm’s Problems

5

SomeRequirements for a Comm’s Primitive

I store m most recent payloads of size n
I O(m) memory overhead
I wait-free O(n) reads and writes of individual payloads
I cannot assume atomic reads/writes of entire payloads

Problem: Can’t have it all! Need to weaken at least one
req.

Choice: if reads can fail, at least we can make read failure
detectable. We call the data structures GRBs (for glorified
ring buffers).

6

SomeRequirements for a Comm’s Primitive

I store m most recent payloads of size n
I O(m) memory overhead
I wait-free O(n) reads and writes of individual payloads
I cannot assume atomic reads/writes of entire payloads

Problem: Can’t have it all! Need to weaken at least one
req.

Choice: if reads can fail, at least we can make read failure
detectable. We call the data structures GRBs (for glorified
ring buffers).

7

SomeRequirements for a Comm’s Primitive

I store m most recent payloads of size n
I O(m) memory overhead
I wait-free O(n) reads and writes of individual payloads
I cannot assume atomic reads/writes of entire payloads

Problem: Can’t have it all! Need to weaken at least one
req.

Choice: if reads can fail, at least we can make read failure
detectable. We call the data structures GRBs (for glorified
ring buffers).

8

CPrototypes of GRBOps

grb_ret_t grb_read(Grb_t *g, size_t i, QID *q, Chunk c[NUMCHUNKS]);

void grb_write(Grb_t *g, size_t i, QID q, Chunk c[NUMCHUNKS]);

where
I all data is tagged with a 64-bit QID (almost a nonce)
I grb_read returns whether the attempted read from slot i

of GRB g into payload buffer c and quantum ID (QID) q
succeeded,

I grb_write writes payload buffer c and QID q into slot i of
GRB g.

9

GRBCorrectness Property

If the reader finds
read(&g, i, &q, c) == GRB_OK

then its slot value (q, c) equals the i’th slot of g when it
was last written by the writer.

Roughly: the read violation detection works.

10

Folklore: Lamport’s Read-Forward-Write-Backward

11

GRBTypes

typedef struct {
QID q0;
Chunk c[NUMCHUNKS];
QID q1;

} Slot_t;

typedef struct {
Slot_t b[NUMSLOTS];

} Grb_t;

12

GRBWrite Operation

void grb_write(Grb_t *g, size_t i, QID q, Chunk c[NUMCHUNKS]) {
Slot_t *s = &(g->b[i % NUMSLOTS]);
s->q0 = q;
for(int i = 0; i < NUMCHUNKS; i++)
s->c[i] = c[i];

s->q1 = q;
}

13

GRBReadOperation

grb_ret_t grb_read(Grb_t *g, size_t i, QID *q, Chunk c[NUMCHUNKS]) {
Slot_t *s = &(g->b[i % NUMSLOTS]);
*q = s->q1;
for(int i = NUMCHUNKS - 1; i >= 0; i--)
c[i] = s->c[i];

return *q == s->q0 ? GRB_OK : E_GRB_FAIL;
}

In practice, the loops can be replaced by memcpy calls.

14

Validation with spin

Check the GRB correctness property using the model
checker spin [Holzmann].

Assumptions baked into the spin model:
1. QIDs are “fresh”
2. atomic reads and writes of QIDs and Chunks
3. hardware respects program order
4. memory is SC (sequentially consistent)

Result(s): the property holds.

15

Reality vs. Models

Problem:
1. Compilers may like to reorder memory accesses.
2. Multi-core ARMv8 is not SC!

No surprise: testing our prototype GRBs on pilot HW reveals
undetected read violations.
None where due to the compiler (some older gcc).

16

GRBReadOperation with Fences

grb_ret_t grb_read(Grb_t *g, size_t i, QID *q, Chunk c[NUMCHUNKS]) {
Slot_t *s = &(g->b[i % NUMSLOTS]); /* safety mod */
*q = s->q1;
PSO_lfence();
for(int i = NUMCHUNKS - 1; i >= 0; i--)
c[i] = s->c[i];

PSO_lfence();
return *q == s->q0 ? GRB_OK : E_GRB_FAIL;

}

17

GRBWrite Operation with Fences

void grb_write(Grb_t *g, size_t i, QID q, Chunk c[NUMCHUNKS]) {
Slot_t *s = &(g->b[i % NUMSLOTS]);
s->q0 = q;
sfence();
for(int i = 0; i < NUMCHUNKS; i++)
s->c[i] = c[i];

sfence();
s->q1 = q;

}

Adding a third sfence(); at the end actually reduces the
likelihood of failed reads.

18

Fence Implementation for AArch64

inline void sfence(void) {
asm ("DSB ISHST": : :"memory");

}

inline void PSO_lfence(void) {
asm ("DSB ISHLD": : :"memory");

}

19

Back to spin

There are generic memory models in the literature, e.g., by
Matsumoto et al. [2018] based on previous work by the same
group that probably started with Abe and Maeda [2014].

Result(s):
I Modelling weak memory is expensive (in terms of state

space sizes).
I Fences are necessary. Even for the PSO model, just two

fences in the grb_write are enough.

I Conclusion: this PSO model isn’t weak enough! It
doesn’t consider reordering of reads.

20

Back to spin

There are generic memory models in the literature, e.g., by
Matsumoto et al. [2018] based on previous work by the same
group that probably started with Abe and Maeda [2014].

Result(s):
I Modelling weak memory is expensive (in terms of state

space sizes).
I Fences are necessary. Even for the PSO model, just two

fences in the grb_write are enough.
I Conclusion: this PSO model isn’t weak enough! It

doesn’t consider reordering of reads.

21

IsThis a Real Issue?

Problem: Could we reproduce any undetected read
violations on the pilot when the writer had its fences?

Answer: Not reliably, even, after hours of hammering
pilot hardware.

Problem: There are many different variations of fence
instructions on these ARM chips. What’s correct? What’s
best?

22

How to Improve Testing Fence Arrangements

Use the diy tool suite [diy, 2021] (nowadays called
herdtools7) to encode the reader and writer core logic with
varying fence arrangements.

Evaluate by running diy-generated binaries on the pilot, and
randomise timing and affinities to find correctness property
violations.

23

A diyModel

AArch64 grb-arm-WdmbishldRdmbish
{
0: X1=q0; 0: X2=c; 0: X3=q1;
1: X1=q0; 1: X2=c; 1: X3=q1;
1: X4=p0; 1: X5=d; 1: X6=p1;
}

P0 | P1 ;
MOV X0,#1 | LDR X0,[X3];
STR X0,[X1] | STR X0,[X6];
DMB ISHLD | DSB ISH ;
MOV X0,#2 | LDR X0,[X2];
STR X0,[X2] | STR X0,[X5];
DMB ISHLD | DSB ISH ;
MOV X0,#1 | LDR X0,[X1];
STR X0,[X3] | STR X0,[X4];

exists
(p0=1 /\ d=0 /\ p1=1)

24

Running this 1010 times on a pilot took less than an hour and
resulted in

Histogram (8 states)
4255112670:>[d]=0; [p0]=0; [p1]=0;
45495453:>[d]=2; [p0]=0; [p1]=0;
15276213:>[d]=0; [p0]=1; [p1]=0;
25947560:>[d]=2; [p0]=1; [p1]=0;
306118224:>[d]=0; [p0]=0; [p1]=1;
687405161:>[d]=2; [p0]=0; [p1]=1;
19486279*>[d]=0; [p0]=1; [p1]=1;
4645158440:>[d]=2; [p0]=1; [p1]=1;
Ok

Witnesses
Positive: 19486279, Negative: 9980513721
Condition exists ([p0]=1 /\ [d]=0 /\ [p1]=1) is validated

25

Analysis

This particularly stupid fence arrangement has a non-zero
(about 0.19%) probability of incorrectness.
Using DMB SY on the writer side and no fence on the reader
side performed better, with only 29 incorrect behaviours in
1010.
Then using DSB SY or similar on the reader side gave 0
incorrect behaviours even over much longer test periods.

26

Result(s): Read fences are necessary. Some fence
arrangements are almost reliable with error probabilities
below 10−9. We would have a hard time finding these
bugs with our previous testing regime.

27

TheEndgame inGRBVerification

Why don’t we just verify it?
The current SOTA in verification of concurrent, racy
programs with fences on weak memory multi-core HW is a
research problem.
There’s initial work by Mansky et al. [2017] to beef up
IRIS/VST to problems like this, but it’s not done yet.

Talk to me if you think we’re doing it wrong or not using
the right tools!

28

TheEndgame inGRBVerification

Why don’t we just verify it?
The current SOTA in verification of concurrent, racy
programs with fences on weak memory multi-core HW is a
research problem.
There’s initial work by Mansky et al. [2017] to beef up
IRIS/VST to problems like this, but it’s not done yet.

Talk to me if you think we’re doing it wrong or not using
the right tools!

29

References I

diy. https://github.com/herd/herdtools7, 2021. Last
accessed 2021/10/21.

Tatsuya Abe and Toshiyuki Maeda. A general model checking
framework for various memory consistency models. In
2014 IEEE International Parallel Distributed Processing
Symposium Workshops, pages 332–341, 2014. URL
https://doi.org/10.1109/IPDPSW.2014.47.

Gerard Holzmann. Spin.
http://spinroot.com/spin/whatispin.html. Accessed
2019/10/21.

William Mansky, Andrew W. Appel, and Aleksey Nogin. A
verified messaging system. Proc. ACM Program. Lang., 1
(OOPSLA), October 2017. URL
https://doi.org/10.1145/3133911.

30

https://github.com/herd/herdtools7
https://doi.org/10.1109/IPDPSW.2014.47
http://spinroot.com/spin/whatispin.html
https://doi.org/10.1145/3133911

References II

Kosuke Matsumoto, Tomoharu Ugawa, and Tatsuya Abe.
Improvement of a library for model checking under weakly
ordered memory model with SPIN. Journal of Information
Processing, 26:314–326, 2018. URL
https://doi.org/10.2197/ipsjjip.26.314.

31

https://doi.org/10.2197/ipsjjip.26.314

Glossary

GRB glorified ring buffer, a wait-free data structure ()

GPS global positioning system, a satellite-based
radionavigation system

IMU inertial movement unit, a motion sensor

QID quamtum ID, a nonce-like entity

32

	Introduction
	Implementation
	Validation
	Architecture vs. Model
	References

