Zélus to Dynlbex: compilation toward an interval CSP
framework for contracts verification

Francois Pessaux

U2IS, ENSTA Paris, Institut Polytechnique de Paris

Synchron, 22 Nov. 2021

firstname.lastname @ensta-paris.fr

€

ENSTA

W2 1P PARIS




What — Why

What
@ Write hybrid systems in a high-level programming language.
@ Compile them to a simulation executable.
@ Check contracts compliance during the simulation.

@ Use a guaranteed integration framework.

Why
@ Rely on high-level constructs.
@ Rely on analyses performed by the language (causality, initialization).

@ Avoid manual encoding in C4++.

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
2/21



The Programming Language : Zélus!

Paradigm

@ Synchronous language :
» dataflow equation, hierarchical automata, signals. ..

o With Ordinary Differential Equations.
o Allows modeling hybrid systems.

@ Generates OCaml simulation code.

Structure of Programs

Hierarchy of (parameterized) nodes returning value(s).
Nodes contain dataflow and differential equations.

Operations lifted on stream of data.

Nodes can be (non-recursively) instantiated.

o

1 . .
Frango}}%&@a&]é/gﬁ\m7 %N&p%réégéqgﬁym]tompilation toward an interval CSP framework for contracts verifica

3/21


http://zelus.di.ens.fr/index.html

Shape of Addressed Programs

Restrictions on Zélus programs

@ Hierarchy of hybrid nodes.

@ One unique explicit return value per node.

@ No discrete computation.

e Contain only ODEs, dataflow equations (and opt. 1 automaton).
@ No nested automata (along the hierarchy or in a same node).

Several Dynamics
@ Use automaton, transitions between automaton states on conditions.

@ Some dynamics common to all the automaton states (outside the
automaton).

@ Some dynamics particular to some automaton states.

= Automaton state change may imply dynamics change.

e New dynamics may trigger a continuous state “jump” (reset).
2/21



Example : Rocket

let hybrid main () = zpos where

rec init zpos = 0.0
and init speed = 0.0
and der power = —. 2.0 %. power init 100.0

and automaton
| EngineOn —>

do

der speed = —9.81 +. power

and der zpos = speed

until up (—. (power —. 0.001)) then EngineOff
| EngineOff —

do

der speed = —. 9.81

and der zpos = speed

until up (—. zpos) then Crashed
| Crashed —

do

der speed = 0.0
and der zpos = 0.0
done

end

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica

5/21



The Guaranteed Integration Framework : Dynlbex?

Features
@ Plug-in of the Ibex library written in C++.
@ Provides validated numerical integration methods, using intervals.

@ Can be used to simulate differential equations.

Example of Initial Value Problem (decreasing exponential)

int main () {
const int n =1 ;
Variable y (n) ;
IntervalVector yinit (n) ;

yinit [0] = Interval (1.0, 1.0) ; /* y-0 = [1, 1] %/
Array<const ExprNode> eq_body (n) ;
eq-body.set_ref (0, —y[0]) ; /* der (y) =—y %/
const ExprVector& eq_return = ExprVector::new. (eq_-body, true) ;
Function ydot = Function (y, eq-return) ;
ivp_ode problem = ivp_ode (ydot, 0.0, yinit) ;
simulation simu = simulation (&problem, __DURATION., __METH__, __PREC_.) ;
simu.run_simulation () ;
return 0 ;

}

v

Frangih‘ﬁa@sfuépgﬁ&r@ﬁ‘sﬁam[?@riﬁﬁcbéﬁfs/t;%ﬁli?&“t%ﬁj}{&” bog\?s/d an interval CSP framework for contracts verifica
6/21




Need for a Dedicated Compilation

Why not a simple C++ translation of Zélus output?

Generated code tightly dependent on the ODE solver.
Zélus' solving runtime very different from Dynlbex's one.
Intervals strongly incompatible with point-wise simulation.

Runtime simulation code deeply mixed with the physics code.

Automaton mode switches no more deterministic.

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
7/21



Point-wise Automaton Simulation

o EngineOn -> EngineOff
LB

| EngineOff -> Crashed v

8182502 o

Point-wise simulation
@ New dynamics at a precise time.
@ New dynamics with precise initial conditions.

= New evolution at precise time and from precise state.

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
8/21



Interval-Based Automaton Simulation

T T
EngineOn -> EngineOff

100

80 -

Interval-based simulation
@ Old dynamics possibly still active in a part of the box.
@ New dynamics possibly starts at all the instants in the box.
@ New dynamics possibly starts with all the initial values in the box.
= New evolution at imprecise time from imprecise state.
@ Several automaton states possibly reachable.

= Tree of simulations.

9/21




Time Uncertainty to Space Uncertainty

Principle
o lteratively perform a “sub-simulation” of the new dynamics,
@ ...on each box where the guard crosses 0,

@ ...applying the “jump”,

o ...flattening the obtained intervals.

Regular simulation
D(q2) <€ >

R(a2) (DYoo)

r

1111111/

o
S~
S~ Lo
=

to t t t3
Francois Pessaux Synchron, 22 Nov. 2021~ Zélus to DynIb&: compilation toward an interval CSP framework for contracts verifica
10/21




Tree of Simulations

y

Chaining Simulations
@ “Sub-simulations” chained together.
@ First one is child of the simulation of the previous dynamics.

@ Last one is the parent of the standard one with new dynamics.

@ Recursive process (during “sub-simulations”).
o

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
11/21




Internal Representation

C++ Implementation

@ Runtime written once for all.
o For each system, automaton data generated from the Zélus program:

Dynlbex Function and ExprNode constructs.
Static values generated at compile-time (arrays of structs).
Final call the runtime main function. )

Data Interpreted by the Simulation Runtime

Automaton = (state — dynamics) x (state — transition) x (state - jump)
Transition = (state x guard x jump)
Transition condition, jump = arithmetic expression

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
12/21



Code Generation Principle: from Zélus to Pre-Automaton

First step
@ Nodes without Zélus automaton transformed to a trivial automata.
Toplevel ODEs injected in all the states, init removed.

Toplevel dataflow equations injected in all the states.

For each state

Eliminate syntactic constructs not handled.
Compute state’s jump as union of inits of ODEs having some (identity
otherwise).

@ Compute inits of the pre-automaton as union of toplevel ODEs inits.

...and some omitted other gory details.

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
13/21



From Zélus to Pre-Automaton (Example)

Node: time
Toplevel inits:
init t = 0.0
State: _St0

let hybrid time () = t where
der t = 1.0 init 0.0

let hybrid main () = zpos where

o der t = 1.0
rec init zpos = 0.0 .
de=-9.81 Jumps:
anc & : t<-t

and init speed = 0.0
and der power =
-. 2.0 *. power init 100.0
and t = time ()
and automaton
EngineOn ->
do
der speed = g +. power
and der zpos = speed
until up (-. (power -. 0.001))

Node: rocket

Toplevel inits:
init power = 100.0
init speed = 0.0
init zpos = 0.0

State: EngineOn
der zpos = speed
der speed = g + power
t = time (O

. der power = -2.0 * power
then EngineOff - —9.81
| EngineDff -> E-
do Transitions:
-> Engine0ff on -(power - 0.001)
der speed = g
Jumps:

and der zpos = speed

zpos <- zpos
done P P

speed <- speed
power <- power
Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica

14/21

end



Code Generation Principle: from Pre-Automaton to
Automaton

Second step

@ Sort and inline toplevel inits together.
@ For each pre-automaton state

Inline node instantiations in equations (ODEs & dataflow).
Transform non-redefined toplevel inits into dataflow equations.
Inline dataflow equations.

Compute the jump of the state :

> use nodes instantiations result (inits of automata)

» use jump of the “pre-automaton” state.

Sort the final equations in a canonical order.

@ Sort the toplevel inits in a canonical order.

@ Convert to vector-valued representation.

...and some omitted other gory details.

v

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
15/21



From Pre-Automaton to Automaton (Example)

Node: time
Toplevel inits:
init t = 0.0

State: _StO
Automaton: rocket

ij;p::_ 1.0 Toplevel inits:
A init 1 = 100.0

Node: rocket init 2= 0.0

init 3 = 0.0

Toplevel inits:
init power = 100.0
init speed = 0.0
init zpos = 0.0
State: EngineOn
der zpos = speed

State: EngineOn
der [0] = 1.0
der [1] = -2.0 * [1]
der [2] = -9.81 + [1]
der [3] = [2]

der speed = g + power Transitions:
P erp -> Engine0ff on - (1 - 0.001)
t = time () Jumps :
der power = -2.0 * power [g]'<_ 0.0
g = —9.81 [3] <- [3]
Transitions:
. [2] <- [2]

-> EngineOff on -(power - 0.001) [1] <= [1]

Jumps:

zpos <- zpos
speed <- speed
power <- power
Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica

16/21



From Automaton to C++(Example)

enum Stateld { EngOn, EngOff, Crashed };

int main () {
const int dim = 3
Variable y (dim)

Function EngOn_dynamics = Function (y, Return (=2 % y[0], —9.81 + y[0], y[1]))
(... Idem with dynamics of states EngOff, Crashed)

Function dyn_of_state[] = { EngOn_dynamics, EngOff_.dynamics, Crashed_dynamics };
struct tr tra_EngOn|[] = { { EngOff, Function (y, — (y[0] — 0.001)) } };

struct tr tra_EngOff[] = { { Crashed, Function (y, —y[2]) } }:

struct tr tra_Crashed[] = { };

struct trs_set trs_EngOn = { 1, tra_EngOn } ;

struct trs_set trs_EngOff = { 1, tra_EngOff } ;

struct trs_set trs_Crashed = { 0, NULL }

struct trs_setx trs_by_state[] = { &trs_.EngOn, &trs_EngOff, &trs_Crashed };

Function reset_EngOn = Function (y, Function (y[0], y[1], y[2]))
(... Idem with resets of states EngOff, Crashed)

Function *reset_of_state []
struct automaton automaton

= { &reset_EngOn, &reset_EngOff, &reset_Crashed };
= { dyn_of_state, trs_by._state, reset_of_state };
IntervalVector yinit (dim) ; yinit[0] = Interval (100.) ;
yinit [1] = Interval (0.) ; yinit[2] = Interval (0.) ;
if (reset_of_state[EngOn])

yinit = (autom—>reset_of_state [state])—>eval_vector (yinit) ;
SimuNode *root = run_state (&automaton, EngOn, dim, yinit, 0., GLOBAL.T_END) ;
return 0 ;

I}rangois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica

17/21



Contracts Verification

Syntax
{| safe x1 in [0.0, +00] x2 in [0.0, +oo] ; (* Interval belonging. *)
safe x4 in [0.5, 100.0] ;
constraint x2 -. x3 -. 1. ; |} (* Constraint < 0. *)
v
Compilation

@ Same principle than compilation of expressions.

@ Generates an extra C++ check function :
» Recursive traversal of the tree of simulations.

@ Check each box to ensure the constraints are satisfied.

@ Variables absent in a safe clause implicitly in [-oo0, +oo0].

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica
18/21



Experimental Results : Rocket (c.f. slide 5)

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica



Other Stuff and Future Work

Remains to do
@ Extend the shape of verified contracts.

@ Relax syntax restrictions on Zélus accepted programs.
@ Address nested (hierarchical) automata?

@ Address discrete computation.

Implementation
@ Compilation implemented in the Zélus compiler.

o Takes place after typing, causality check, initialization check.

@ Does not break Zélus standard compilation.

Some questions ? J

Francois Pessaux Synchron, 22 Nov. 2021 Zélus to Dynlbex: compilation toward an interval CSP framework for contracts verifica

20/21



