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Motivation

Objective
• A reference semantics for Zélus,
• that is constructive/executable, i.e., the basis of an interpreter;
• that applies directly to the source before any compilation step;
• both discrete and continuous-time systems.

Used for compiler testing, debugging of partial models; to prove compiler
steps.

Approach
• Zélus is a two level language: a kernel synchronous language on top of

which continuous-time operations are added.
• Define the semantics as a functor parameterized by the ODE and

zero-crossing solvers.
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The language kernel

A first-order subset of Zélus.

d ::= let f = e | let f p = e
| let node f p = e
| let hybrid f p = e | d d

p ::= () | x | x , ..., x

e ::= c | x | f (e, ..., e)
| pre e | e fby e | (e, ..., e) | ()
| let E in e | let rec E in e
| up e | last x

E ::= p = e | E andE
| der xe
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Hybrid extension

A first-order functional synchronous language.

Three new constructs:

• der x = e defines the time derivative of x to be the value of e;

• up e defines a zero-crossing event at time when e crosses 0;

• let hybrid f p = e defines a hybrid node, i.e., a system whose base
time is R (instead of N).
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Constructive/executable Semantics
Define a semantics that is executable. For hybrid systems, make the
semantics parameterized by the solver for ODEs and zero-crossing
detection.

A Coiterative Semantics
• A reformulation of the old “coiterative

semantics” [Caspi and Pouzet, 1998].
• An executable semantics and reference interpreter 1.

Language expressiveness
• first-order subset of Zélus;
• mix of streams and hierarchical automata a la Lucid Synchrone;
• no continuous-time; neither ODEs nor zero-crossing.

Objective: extend the semantics to treat continuous-time operations.
1https://github.com/marcpouzet/zrun
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A coiterative interpretation of streams [Jacobs and Rutten, 1997]
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Streams as sequential processes [Paulin-Mohring, 1995]

A concrete stream producing values in the set T is a pair made of a step
function f : S → T × S and an initial state s : S .

coStream(T , S) = CoF (S → T × S ,S)

Given a concrete stream v = CoF (f , s), nth(v)(n) returns the n-th
element of the corresponding stream process:

nth(CoF (f , s))(0) = let v , s = f s in v
nth(CoF (F , s))(n) = let v , s = f s in nth(CoF (f , s))(n − 1)

Two streams CoF (f , s) and CoF (f ′, s ′) are equivalent iff:

∀n ∈ N.nth(CoF (f , s))(n) = nth(CoF (f ′, s ′))(n)
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Synchronous Stream Processes [Caspi and Pouzet, 1998]

A stream function should be a value from:

stream(T )→ stream(T ′)

that is:
coStream(T ,S)→ coStream(T ′,S ′)

Consider the particular class of length preserving functions.

sNode(T ,T ′,S) = CoP(S → T → T ′ × S ,S)

That is, it only need the current value of its input in order to compute the
current value of its output.

It is the classical definition of a Mealy machine.
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Synchronous Application

A value f = CoP(f t , s) defines a stream function thanks to the function
run(.)(.):

run(CoP(f t , s))(CoF (x , xs)) = CoF λ(m, xs). let v , xs = x xs in
let v ,m = f t m v in
v , (m, xs)

(s, xs)

with
run(.)(.) : sNode(T ,T ′,S ′) → coStream(T , S)

→ coStream(T ′, S ′ × S)
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Feedback (fixpoint)

Consider:
f : coStream(T ,S)→ coStream(T ′,S ′)

and the following feedback loop written in the kernel language:

let rec y = f (y) in y

We would like to define a function fix (.) such that fix (f ) is a fixpoint of f ,
that is, fix (f ) = f (fix (f )).

Suppose that f is length preserving, that is, it exists CoP(f t , s) such that
f y = run(CoP(f t , s0))(y).

If yn = nth(y)(n), we should have:

yn, sn+1 = f t sn yn

10 / 53



A lazy functional language like Haskell allows for writting such a recursively
defined value:

fix
(
f t
)
= λs.let rec v , s ′ = f t s v in v , s ′

where v is defined recursively.

CoF (fix
(
f t
)
, s) is a stream that is a solution of the equation y = f (y).

We have replaced a recursion on time, that is, a stream recursion, by a
recursion on a value produced at every instant.

Yet, fix (.) is not a total function, e.g., it may diverge for some functions.

Idea: Complete a set T with ⊥ to expliticly represent divergence and
compute a bounded fix-point.
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Flat Domain
Given a set T , the flat domain D = T⊥ = T + {⊥}, with ⊥ a minimal
element and ≤ the flat order, i.e., ∀x ∈ T .⊥ ≤ x .

If f : T → T ′ is a total function, f⊥(⊥) = ⊥ and f⊥(x) = f (x) otherwise.

(D,⊥,≤) is a complete partial order (CPO). It is lifted to:

Products:
(v1, v2) ≤ (v ′1, v

′
2) iff (v1 ≤ v ′1) ∧ (v2 ≤ v ′2)

with (⊥,⊥) for the bottom element.

Functions:
f ≤ g iff ∀x .f (x) ≤ g(x)

with λx .⊥ for the bottom element.

Stream processes:

CoF (f , sf ) ≤ CoF (g , sg ) iff f ≤ g ∧ sf ≤ sg

with CoF (λs.(⊥, s),⊥) the bottom element, that is, the process that stuck.
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Fixpoint and Bounded Fixpoint:

If D1 an D2 are two CPOs. f : D1 → D2 is continuous iff
f (lub(X )) = lub(f (X )) where lub(X ) is the least upper bound of a set X .

By the Kleene theorem, a continuous function f : D → D has a minimal
fix-point (fix (f ) = lim

n→∞
(f n(⊥)).

Yet, this does not lead to a computational definition because the height of
D can be unbounded.

When D is of bounded height, the fixpoint can be reached in a finite
number of steps.

We exploit this intuition for the computation of the fix-point

The idea of bounded iteration was exploited in [Edward and Lee, 2003].

13 / 53



Bounded Fixpoint

The unbounded iteration for the fixpoint is replaced by a bounded one.

fix (0) (f )(s) = ⊥, s
fix (n) (f )(s) = let v , s ′ = fix (n − 1) (f )(s) in f s v

with:

fix (.) : N→ (S → T⊥ → T⊥ × S)→ S → coStream(T⊥, S)

or the equivalent form fix (f ) (s)(n)(⊥) with:

fix (0) (f )(s)(⊥) = ⊥, s
fix (n) (f )(s)(⊥) = let v ′, s ′ = f s v in

fix (n − 1) (f )(s)(v ′)
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or one that stops as soon as the fixpoint is reached. < is the strict order
(x < y iff (x ≤ y) ∧ (x 6= y)):

fix (0) (f )(<)(s)(⊥) = ⊥, s
fix (n) (f )(<)(s) = let v ′, s ′ = f s v in

if v < v ′ then fix (n − 1) (f )(<)(s)(v)
else v , s ′

with:

fix (.) : N→ (S → T⊥ → T⊥ × S) → (T⊥ → T⊥ → bool)
→ S → coStream(T⊥, S)
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The semantics of an expression e is:

[[e]]ρ = CoF (f , s) where f = [[e]]Step
ρ and s = [[e]]Init

ρ

We use two auxiliary functions. If e is an expression and ρ an environment
which associates a value to a variable name:
• [[e]]Init

ρ is the initial state of the transition function associated to e;

• [[e]]Step
ρ is the step function.

We suppose the existence of a environment γ for global definitions. It is
kept implicit in the following definitions.

γ(x) returns either a value Val(v) or a node CoP(p, s).
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[[pre e]]Init
ρ = (nil , [[e]]Init

ρ )

[[pre e]]Step
ρ = λ(m, s).m, [[e]]Step

ρ (s)

[[x ]]Init
ρ = ()

[[x ]]Step
ρ = λs.(ρ(x), s)

[[c]]Init
ρ = ()

[[c]]Step
ρ = λs.(c , s)

[[(e1, ..., e2)]]
Init
ρ = ([[e1]]

Init
ρ , ..., [[e2]]

Init
ρ )

[[(e1, ..., e2)]]
Step
ρ = λs. let (vi , si = [[ei ]]

Step
ρ (si ))i∈[1..n] in

(v1, ..., vn), (s1, ..., sn)

For this first semantics, we take nil = ⊥.
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Fby

Two cases: either the first argument is a constant or not.

[[v fby e]]Init
ρ = (v , [[e]]Init

ρ )

[[v fby e]]Step
ρ (m, s) = m, let v , s = [[e]]Step

ρ (s) in (v , s)

[[e1 fby e2]]
Init
ρ = (None, [[e1]]

Init
ρ , [[e2]]

Init
ρ )

[[e1 fby e2]]
Step
ρ (None, s1, s2) = let v1, s1 = [[e1]]

Step
ρ (s) in

v1, let v2, s2 = [[e2]]
Step
ρ (s2) in

(Some(v2), s1, s2)

[[e1 fby e2]]
Step
ρ (Some(v), s1, s2) = v , let v1, s1 = [[e1]]

Step
ρ (s) in

let v2, s2 = [[e2]]
Step
ρ (s2) in

(Some(v2), s1, s2)
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[[f (e1, ..., en)]]
Init
ρ = [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[f (e1, ..., en)]]
Step
ρ = λs. let (vi , si = [[ei ]]

Step
ρ (si ))i∈[1..n] in

fo(v1, ..., vn), s

if γ(f ) = Val(fo)

[[f (e1, ..., en)]]
Init
ρ = fi , [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[f (e1, ..., en)]]
Step
ρ = λ(m, s).let (vi , si = [[ei ]]

Step
ρ (si ))i∈[1..n] in

let r ,m′ = fo m (v1, ..., vn) in
r , (m′, s)

if γ(f ) = CoP(fo, fi)

[[let node f (x1, ..., xn) = e]]Init
γ = γ + [CoP(p, s)/f ]

where s = [[e]]Init
ρ+[⊥/x1,...,⊥/xn] and p = λs, (v1, ..., vn).[[e]]

Step
ρ+[v1/x1,...,vn/xn]

(s)
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Equations
If E is an equation, ρ is an environment, [[E ]]Init

ρ is the initial state and
[[E ]]Step

ρ is the step function. The semantics of an equation eq is:

[[E ]]ρ = [[E ]]Init
ρ , [[E ]]Step

ρ

[[p = e]]Init
ρ = [[e]]Init

ρ

[[p = e]]Step
ρ = λs.let v , s = [[e]]Step

ρ (s) in [v |p], s

[[E1 andE2]]
Init
ρ = ([[E1]]

Init
ρ , [[E2]]

Init
ρ )

[[E1 andE2]]
Step
ρ = λ(s1, s2).let ρ1, s1 = [[E1]]

Step
ρ (s1) in

let ρ2, s2 = [[E2]]
Step
ρ (s2) in

ρ1 + ρ2, (s1, s2)

[[rec E ]]Init
ρ = [[E ]]Init

ρ

[[rec E ]]Step
ρ = λs.fix (‖E‖+ 1) (λs, ρ′.[[E ]]Step

ρ+ρ′(s))(s)

‖E‖ is the number of variables defined by E .
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Let Def (E ) = {x1, ..., xn}, the set of defined variables in E .

[[let E in e ′]]Init
ρ = [[E ]]Init

ρ , [[e ′]]Init
ρ+[⊥/x1,...,⊥/xn]

[[let E in e ′]]Step
ρ = λ(s, s ′).let ρ′, s = [[E ]]Step

ρ (s) in
let v ′, s ′ = [[e ′]]Step

ρ+ρ′(s
′) in

v ′, (s, s ′)

[[let rec E in e ′]]Init
ρ = [[e]]Init

ρ , [[e ′]]Init
ρ+[⊥/x1,...,⊥/xn]

[[let rec E in e ′]]Step
ρ = λ(s, s ′).let ρ′, s = [[rec E ]]Step

ρ (s) in
let v ′, s ′ = [[e ′]]Step

ρ+ρ′(s
′) in

v ′, (s, s ′)
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Control Structures

Equations are extended with local definitions:

E ::= ... | local v inE | reset E every e | if e then E else E

v ::= x | x init e | x default e

Expressions are extended with a construct to access the last value of a
stream:

e ::= ... | last x
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Environment

The construct local x inE declares x to be local in E .

The construct local x init e inE declares x to be local and the last
computed value of x to be initialized with the value of e.

The construct local x default e inE declares x to be local and the
default value of x to be the value of e, at instants where no definition of x
is given.
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Conditionals over Equations

If e is an expression whose type is a sum type t = C1 | ... | Cn,
• match e with Ci1 → E1 | ... | Cin → En activates equation Ej such

that ij is the first index such that e = Cij , with 1 ≤ i1, ..., in ≤ n.
• if e then E1 else E2 a short-cut for
match e with true→ E1 | false→ E2

E ::= ... | match e with C → E | ... | C → E
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Reset

Two ways:
• Recompute the initial state of E when the reset condition e is true or;
• duplicate the initial state of E and use this state every time e is true. 2

We adopt the later solution.

[[reset E every e]]Init
ρ = [[E ]]Init

ρ , [[E ]]Init
ρ , [[e]]Init

ρ

[[reset E every e]]Step
ρ (s0, s1, s2) = let v , s2 = [[e]]Step

ρ s2 in
let s1 = if s2 then s0 else s1 in
let ρ, s1 = [[E ]]Step

ρ s1 in
ρ, (s0, s1, s2)

2This idea is due to Louis Mandel.
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Hierarchical Automata
A automaton which describe a system with several modes and transitions
between them.
Such an automaton is characterized by:
• A finite set of states.
• In every state, a set of equations with variables that are possibly local to

the state.
• A set (possibly empty) of “weak transitions” (keyword until) which

define the active state for the next reaction.
• A set (possibly empty) of “strong transitions” (keyword unless) which

define the active set of equations for the current reaction.
• Transitions can be by “reset” (condition then) or by “history” (condition

continue).
• By default, the initial state is the first in the list. If given, ... init se

defines the initial state of the automaton to be the value of se.
Rmq: Contrary to Scade 6 and Lucid Synchrone that implement [?], in
Zelus, weak and strong transitions cannot be mixed inside an automaton.
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The syntax is extended in the following way.

E ::= ... | automaton (S(p)→ u wt)+ init seε

| automaton (S(p)→ u st)+ init seε

u ::= local v in u | do E

st ::= unless t∗

wt ::= until t∗

t ::= e then S(e, ..., e) | e continue S(e, ..., e)

se ::= S(e, ..., e) | if e then se else se

se stands for an expression which returns a state. It is used at the first
instant of activation or reset of the automaton.
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Examples in Zelus

type t = Incr | Decr | Idle

let f(c) =
local o init 0
do
match c with
| Idle -> (* o keeps its previous value, i.e., o = last o *)

do done
| Incr -> do o = last o + 1 done
| Decr -> do o = last o - 1 done

in o
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Examples in Zelus

let node controller(auto, error, input) = output where rec
automaton
| Manual -> do output = input unless auto then Auto
| Auto -> do output = run pid(p, i, d, error)

unless (not auto) then Manual

let node await(a) = go where rec
automaton
| Await -> do go = false unless a then Run
| Go -> do go = true done

let node abro(a, b, r) = go where rec
reset automaton

| Await -> do go = false
unless (run await(a) && run await(b))
then Go

| Go -> do go = true done
every r
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Semantics
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Environment
The environement is complemented to possibly associate a default or initial
value to a variable.

ρ ::= ρ+ [v/x ] | ρ+ [v/default x ] | [v/last x ] | []

If ρ and ρ′ are two environments, we write ρ by ρ′ the completion of ρ with
default or initial values from ρ′.

This operation is used to define the value of a variable in

ρ by [] = ρ
ρ by (ρ′ + [v/default x ]) = (ρ+ [v/x ]) by ρ′

ρ by (ρ′ + [v/last x ]) = (ρ+ [v/x ]) by ρ′

ρ by (ρ′ + [v/x ]) = ρ by ρ′

If p is a pattern and v is a value, match v with p builds the environment
by matching v by p such that:

[v |x ] = [v/x ]
[(v1, v2)|(p1, p2)] = [v1|p1] + [v2|p2] 31 / 53



Notation: If ρ = ρ′ + [v/x ], ρ\x = ρ′.

Let n = ‖E‖+ 1.

[[local x inE ]]Init
ρ = [[E ]]Init

ρ

[[local x inE ]]Step
ρ (s) = let ρ′, s = fix (n) (λs, ρ′.[[E ]]Step

ρ+ρ′(s))(s) in
ρ′\x , s

[[local x default v inE ]]Init
ρ = [[E ]]Init

ρ

[[local x init v inE ]]Init
ρ = (v , [[E ]]Init

ρ )

[[local x default v inE ]]Step
ρ (s) =

let ρ′, s = fix (n) (λρ′, s.[[E ]]Step
ρ+ρ′+[v/default x](s))(s) in

ρ′\x , s

[[local x init v inE ]]Step
ρ (w , s) =

let ρ′, s = fix (n) (λρ′, s.[[E ]]Step
ρ+ρ′+[w/last x](s))(s) in

ρ′\x , (ρ′(x), s)
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Semantics for conditionals

The semantics for a conditional must consider the case where a branch
defines a value for a variable x in one branch but not the other branch. We
take the following convention:
• If a variable x is declared with a default value v , then a missing

equation for x in a branch means that x = v in that branch.
• Otherwise, x = last x , that is, x keeps its previous value.
• If x is declared with an initial value for last x , this means that x has a

definition in every branch. Otherwise, there is a potential initialisation
issue which has to be checked by other means.
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Semantics for Conditionals
The Initial State

[[match e with (Ci → Ei )i∈[1..n]]]
Init
ρ = ([[e]]Init

ρ , [[E1]]
Init
ρ , ..., [[En]]

Init
ρ )

The Transition Function:

[[match e with (Ci → Ei )i∈[1..n]]]
Step
ρ (s, s1, ..., sn) =

let v , s = [[e]]Step
ρ (s) in

match v with(
Ci → let ρi , si = [[Ei ]]

Step
ρ (si ) in

ρi by ρ[N\Ni ], (s, s1, ..., sn)

)
i∈[1..n]

where N = ∪i∈[1..n](Ni )and Ni = Def (Ei )

The Last Computed Value:

[[last x ]]Init
ρ = ()

[[last x ]]Step
ρ = λs.ρ(last x), s
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Hierarchical Automata

We consider here only the case where no initialisation state se is given.
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Initial state of the transition function

[[automaton (Si (pi )→ ui wti )i∈[1..n]]]
Init
ρ =

let (si = [[ui ]]
Init
ρ )i∈[1..n] in

let (s ′i = [[wti ]]
Init
ρ )i∈[1..n] in

(S1(), false, (s1, . . . , sn), (s
′
1, . . . , s

′
n))

[[automaton (Si (pi )→ ui sti )i∈[1..n]]]
Init
ρ =

let (si = [[ui ]]
Init
ρ )i∈[1..n] in

let (s ′i = [[sti ]]
Init
ρ )i∈[1..n] in

(S1(), false, (s1, . . . , sn), (s
′
1, . . . , s

′
n))

[[automaton (Si (pi )→ ui wti )i∈[1..n]]]
Step
ρ (v , r , s, s ′) =

let (ρ, v , r), (s, s ′) = [[(Si (pi )→ ui wti )i∈[1..n]]]
v ,r
ρ (s, s ′) in

ρ, (v , r , s, s ′)

[[automaton (Si (pi )→ ui sti )i∈[1..n]]]
Step
ρ (v , r , s, s ′) =

let (ρ, v , r), (s, s ′) = [[(Si (pi )→ ui sti )i∈[1..n]]]
v ,r
ρ (s, s ′) in

ρ, (v , r , s, s ′)
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[[(Si (pi )→ ui wti )i∈[1..n]]]
v ,r
ρ ((s1, ..., sn), (s

′
1, ..., s

′
n)) =

match v withSi (pi )→ let ρ, si = [[ui ]]
r
ρ(si ) in

let (v , r), s ′i = [[wti ]]
v ,r
ρ (s ′i ) in

ρ, (v , r , (s1, ..., sn), (s
′
1, ..., s

′
n))


i∈[1..n]

[[(Si (pi )→ ui sti )i∈[1..n]]]
v ,r
ρ ((s1, ..., sn), (s

′
1, ..., s

′
n)) =

let (v , r , (s ′1, ..., s
′
n) =

match v with(
Si (pi )→ let (v , r), s ′i = [[sti ]]

v ,r
ρ (s ′i ) in

(v , r , (s ′1, ..., s
′
n))

)
i∈[1..n]

inmatch v with(
Si (pi )→ let ρ, si = [[ui ]]

r
ρ(si ) in

ρ, (v , r , (s1, ..., sn), (s
′
1, ..., s

′
n))

)
i∈[1..n]
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[[until t∗]]Init
ρ = [[t∗]]Init

ρ

[[unless t∗]]Init
ρ = [[t∗]]Init

ρ

[[until t∗]]v ,rρ (s) = [[t∗]]v ,rρ (s)
[[unless t∗]]v ,rρ (s) = [[t∗]]v ,rρ (s)

[[ε]]Init
ρ = ()

[[e then se t∗]]Init
ρ = ([[e]]Init

ρ , [[se]]Init
ρ )

[[e continue se t∗]]Init
ρ = ([[e]]Init

ρ , [[se]]Init
ρ )

[[ε]]v ,rρ (s) = (v , r), s
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[[e then se t∗]]v ,rρ ((s1, s2), s3) =

let s1 = if r then [[e]]Init
ρ else s1 in

let s2 = if r then [[se]]Init
ρ else s2 in

let s3 = if r then [[t∗]]Init
ρ else s3 in

let c , s1 = [[e]]Step
ρ (s1) in

if c then let v , s2 = [[se]]Step
ρ (s2) in (v , true), ((s1, s2), s3)

else let (v , r), s2 = [[t∗]]v ,rρ (s) in (v , r), (s1, s2)

[[e continue se t∗]]v ,rρ ((s1, s2), s3) =

let s1 = if r then [[e]]Init
ρ else s1 in

let s2 = if r then [[se]]Init
ρ else s2 in

let s3 = if r then [[t∗]]Init
ρ else s3 in

let c , s1 = [[e]]Step
ρ (s1) in

if c then let v , s2 = [[se]]Step
ρ (s2) in (v , false), ((s1, s2), s3)

else let (v , r), s2 = [[t∗]]v ,rρ (s) in (v , r), (s1, s2)

[[S(e1, ..., en)]]
Init
ρ = [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[S(e1, ..., en)]]
Step
ρ = let (vi , si = [[ei ]]

Step
ρ (si ))i∈[1..n] in

S(v1, ..., vn), (s1, ..., sn) 39 / 53



Interpretation

• The transition function associated with the automaton construct is
executed in an initial state.
• This state if of the form (ps, pr , s, s ′). ps is the current state of the

automaton. It is initialised with the initial state of the automaton. pr is
the reset status. It is initialized with the value false. s is the state to
execute the code of the strong transitions; s ′ is the state to execute the
body of the automaton; s ′ is the state to execute the transitions.
• For an automaton with weak transition, the body is executed, then the

transitions.
• For an automaton with strong transitions, the code of transitions of the

current state are executed. This determines the active state. Then, the
corresponding body is executed.
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Adding ODEs, zero-crossing and hybrid nodes.
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A hybrid node
The language is extended with continuous-time operators.
der .. and up . that must only appear in the body of a hybrid node.

Idea: Interpret a hybrid node as a regular node

der xe
defines a state variable {cin; cout; dout} with three fields:
• the current value of x (input from the solver);
• the current derivative of x (output to the solver).
• the current value of x (output to the solver).

up e
defines a state variable {zin; zout} with two fields:
• a boolean value, true when e crosses zero (input from the solver).
• the current value of e (output to the solver).
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[[der x = e]]Init
ρ = [[e]]Init

ρ

[[der x = e]]Step
ρ (s) = let v , s = [[e]]Step

ρ (s) in
[v/der x ], s

[[up e]]Init
ρ = ({zin = false; zout = nil}, [[e]]Init

ρ )

[[up e]]Step
ρ ({zin, zout}, s) = let v , s = [[e]]Step

ρ (s) in
zin, {zin; zout = v}, s)

Let n = ‖E‖+ 1.

[[local der x init v inE ]]Init
ρ =

({cin = 0.0; cout = v ; dout = 0.0}, [[e]]Init
ρ , [[E ]]Init

ρ )

[[local der x init v inE ]]Step
ρ ({cin; cout; dout}, s) =

let ρ′, s = fix (n) (λρ′, s.[[E ]]Step
ρ+ρ′+[cin/default x][cout/last x](s))(s) in

ρ′\x , ({cin; cout = ρ′(x); dout = ρ′(der x)}, s)
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Provide access functions:
• cset(s, y) stores the position of the continuous state y into s;
• cget(s) output the position of the continuous state y from s;
• dget(s) outputs the derivative of the continuous state y from s;
• zset(s, z) sets the zero-crossing values;
• zget(s) outputs the zero-crossing values to be observed
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Hybrid Node
Let f be a hybrid node defined by let hybrid f p = e. Defines its
semantics CoP(f t , s) as if it were defined as a node (see slide 19). Defines
the following three functions:
• Derivative:

f d : S → I → (Y → Y ′) = λs, x , y .let v , s = f t (cset(s, y)) x in dget(s)

• Zero-crossing function:

f z : S → I → (Y → Zo) = λs, x , y .let v , s = f t (cset(s, y)) x in zget(s)

• Output function:

f out : S → I → (Y → O) = λs, x , y .let v , s = f t (cset(s, y)) x in v

• Step function:

f step : S → Y → Zi → I → O × S × Y =
λs, y , zi , x .let v , s = f t (zset(cset(s, y), zi)) x in v , (s, cget(s))

The input x is considered to be piece-wise constant during integration, i.e.,
the solver calls (f d s x) : Y → Y ′.
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The Simulation Loop [Bourke et al., 2015]
Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

o, s ′, y ′ = f step(s)(y)(zi)(x) zo = f z(s)(x)(y)
ẏ = f d(s)(x)(y)

The purpose of the compiler is to generate:
• f step gathers all discrete state changes.
• f z define the zero-crossing signals.
• f d define the time derivative of continuous-state variables.
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The Simulation Loop [Bourke et al., 2015]
The execution can be defined as a function which is parameterised by two
functions csolve and zsolve.

csolve : (Y → Y ′)→ Y → (Time × (Time → Y ))

zsolve : (Y → Zo)→ (Time → Y )→ Time × Time → (Time × Zi)

Given f : Y → Y ′ and y : Y , csolve(f )(y) = h, dky . dky is a dense
solution, that is:

y(t) ≈ dky(t) for t ∈ [0, h]

Given g : Y → Zo, zsolve(g)(dky)(h′) = h, zi locates the zero-crossing of
g between time 0 and h′.

It either returns h = h′ and zi = falsel if no zero-crossing occurs;

or the earliest instant h ∈ [0, h′] and the vector zi with for all k ∈ [1..l ],
zi [k] = true if g(y)[k] crosses zero.
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Given a hybrid node f and semantics CoP(f t , s). Defines s0, f
d , f z , f step

and access functions.

Let p : N→ I an input signal. The simulation computes o such that:

A cyclic execution of:

1. The initial state is the discrete mode with ly0 is a vector of zeros and zi0
is a vector of false, i.e., ly0[i ] = 0 for all i ∈ cget(s0) and zi0[i ] = false
for all i ∈ zget(s0).

2. In the discrete mode, compute:

on, sn+1, yn+1 = f step sn lyn zin pn

lpn+1 = pn

3. In the integration mode, compute:

h′n, dkyn = csolve(f d sn lpn)(yn))
hn, zin+1 = zsolve(f z sn lpn)(dkyn)(h

′
n)

lyn+1 = dkyn(hn)

When no equation is given, streams keep their previous values.
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This simulation interprets a hybrid node with an input of type I and an
output of type O as a stream function. It is also possible to return the
stream h as an extra output of this function.

Instead of taking a stream of values of type I , one can take a stream of
values of type (h : Time)× ([0, h]→ I ), that is, a duration h : Time ⊆ R+

and a function f : [0, h]→ I .

Instead of returning a stream of values of type O, one can return of stream
of values of type (h : Time)× ([0, h]→ O).

This time, the f d , f z , f step, f out functions must be modified to take insto
account that the input is continuously changing.

The f out function is used in the integration mode to produce the output.
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Alternatively

Instead of generating a single step function with a state that contains
positions, derivatives and zero-crossing information, and then specialise it,
define directly all the components of a hybrid expression:

hNode(T ,T ′, S ,Y ,Zi ,Zo) =
CoH (S → Y → Y ′,

S → Y → Zo,
S → Y → T ′,
S → Y → Zi → T → T ′ × S × Y ,
S ,
Y )

where the semantics value of an expression becomes of the form:
CoH(f d , f z , f out , f step, s, y)
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• f d defines the derivative;
• f z defines the zero-crossings;
• f out defines the output from the current discrete state and continuous

state;
• f step defines the step function to be evaluated at a zero-crossing instant;
• s is the initial discrete state;
• y is the initial continuous state.
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This is ongoing work

A preliminary prototype (June 2000); no hybrid constructs:
https://github.com/marcpouzet/zrun

A new one based on Zelus (Spring 2021):
https://github.com/INRIA/zelus, branch work. Hybrid constructs.

Purely functional OCaml code (except for code for debugging).

Use a generic library for the computation of fix-points 3. Some preliminary
work done by Antonin Reitz (Spring 2021).

Make the semantics more abstract, e.g.,:
• replace concrete values by a set (e.g., integers by intervals) in order to

perform set-based simulation;
• replace concrete values by a symbolic expressions.

3The library Fix https://gitlab.inria.fr/fpottier/fix by Francois Pottier.
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