An Executable Constructive Semantics for Zélus

Marc Pouzet

Ecole normale supérieure
Marc.Pouzet@ens.fr

SYNCHRON
November 25, 2021

1/53

Marc.Pouzet@ens.fr

Motivation

Objective

® A reference semantics for Zélus,

e that is constructive/executable, i.e., the basis of an interpreter;
e that applies directly to the source before any compilation step;

® both discrete and continuous-time systems.

Used for compiler testing, debugging of partial models; to prove compiler
steps.

Approach

e Zélus is a two level language: a kernel synchronous language on top of
which continuous-time operations are added.

® Define the semantics as a functor parameterized by the ODE and
zero-crossing solvers.

2/53

The language kernel

A first-order subset of Zélus.

d = letf=e|letfp=e
| let node f p=e
| let hybrid f p=e|d d
p = O|x|x,.,x
= c|x|f(e...€)
|pree| efbyel (e, ...,e)| O
| let E ine|letrec E ine
| upe | last x

E = p=e|EandE
| der xe

3/53

Hybrid extension

A first-order functional synchronous language.
Three new constructs:
® der x = e defines the time derivative of x to be the value of e;

® up e defines a zero-crossing event at time when e crosses 0;

® let hybrid f p = e defines a hybrid node, i.e., a system whose base
time is R (instead of N).

4/53

Constructive/executable Semantics

Define a semantics that is executable. For hybrid systems, make the
semantics parameterized by the solver for ODEs and zero-crossing
detection.

A Coiterative Semantics

e A reformulation of the old “coiterative
semantics’ [Caspi and Pouzet, 1998].

 An executable semantics and reference interpreter 1.

Language expressiveness

e first-order subset of Zélus;
® mix of streams and hierarchical automata a la Lucid Synchrone;

® no continuous-time; neither ODEs nor zero-crossing.

Objective: extend the semantics to treat continuous-time operations.

"https: //github.com/marcpouzet/zrun

5/53

https://github.com/marcpouzet/zrun

A coiterative interpretation of streams [Jacobs and Rutten, 1997]

6/53

Streams as sequential processes [Paulin-Mohring, 1995]

A concrete stream producing values in the set T is a pair made of a step
function f : S — T x S and an initial state s : S.

coStream(T,S) = CoF(S§ - T x S,S)

Given a concrete stream v = CoF(f,s), nth(v)(n) returns the n-th
element of the corresponding stream process:

nth(CoF(f,s))(0) = letv,s="fsinv
nth(CoF(F,s))(n) = letv,s=f sinnth(CoF(f,s))(n—1)

Two streams CoF (f,s) and CoF(f’,s’) are equivalent iff:

Vn € N.nth(CoF (f,s))(n) = nth(CoF(f',s"))(n)

7/53

Synchronous Stream Processes [Caspi and Pouzet, 1998]

A stream function should be a value from:

stream(T) — stream(T’)

that is:
coStream(T,S) — coStream(T',S")

Consider the particular class of length preserving functions.

sNode(T,T',S)=CoP(S - T —T'xS,S)

That is, it only need the current value of its input in order to compute the
current value of its output.

It is the classical definition of a Mealy machine.

8/53

Synchronous Application

A value f = CoP(f*%,s) defines a stream function thanks to the function
run(.)(.):
run(CoP(f*,s))(CoF (x, xs)) = CoF A(m, xs). let v, xs = x xs in
letv,m=f'mvin
v, (m,xs)
(s, x5)
with
run(.)(.) : sNode(T, T',S") — coStream(T,S)
— coStream(T', S’ x S)

9/53

Feedback (fixpoint)

Consider:
f . coStream(T,S) — coStream(T’,S')

and the following feedback loop written in the kernel language:
let recy =f(y) iny

We would like to define a function fix (.) such that fix (f) is a fixpoint of f,
that is, fix (f) = f(fix (f)).

Suppose that f is length preserving, that is, it exists CoP(f*,s) such that
fy = run(CoP(f*,s0))(y).

If vy, = nth(y)(n), we should have:

t
Yn,Sn1 = Spyn

10/53

A lazy functional language like Haskell allows for writting such a recursively
defined value:

fix (f*) = As.letrecv,s' = ftsvinv,s'
where v is defined recursively.
CoF (fix (f*),s) is a stream that is a solution of the equation y = f(y).

We have replaced a recursion on time, that is, a stream recursion, by a
recursion on a value produced at every instant.

Yet, fix (.) is not a total function, e.g., it may diverge for some functions.

Idea: Complete a set T with L to expliticly represent divergence and
compute a bounded fix-point.

11/53

Flat Domain

Given a set T, the flat domain D =T, = T 4+ {L}, with L a minimal
element and < the flat order, i.e,, Vx € T.L < x.

If f: T — T'is a total function, f| (L) = L and f (x) = f(x) otherwise.
(D, L, <) is a complete partial order (CPO). It is lifted to:

Products:
(vi,va) < (vq, 4) iff (v < v{) A (va < Vh)

with (L, L) for the bottom element.

Functions:
f < g iff Vx.f(x) < g(x)

with Ax.L for the bottom element.
Stream processes:
CoF(f,sr) < CoF(g,sg) iff f < g Asf<sg

with CoF(As.(L,s), L) the bottom element, that is, the process that stuck.

12/53

Fixpoint and Bounded Fixpoint:

If D1 an Dy are two CPOs. f : D; — D> is continuous iff
f(lub(X)) = lub(f(X)) where lub(X) is the least upper bound of a set X.

By the Kleene theorem, a continuous function f : D — D has a minimal
fix-point (fix (f) = Ii_}m (F"(L)).

Yet, this does not lead to a computational definition because the height of
D can be unbounded.

When D is of bounded height, the fixpoint can be reached in a finite
number of steps.

We exploit this intuition for the computation of the fix-point

The idea of bounded iteration was exploited in [Edward and Lee, 2003].

13/53

Bounded Fixpoint

The unbounded iteration for the fixpoint is replaced by a bounded one.

fix(0)(f)(s) = L,s
fix (n) (F)(s) = letv,s' =fix(n—1)(f)(s)infsv

with:
fix((): N=(§—= T, — T, xS)— S — coStream(T_,S)
or the equivalent form fix (f) (s)(n)(L) with:

fix (0) (F)(s)(L) = L,s
fix (n) (F)(s)(L) = let vi,s'="fsvin
fix (n = 1) (F)(s)(v)

14/53

or one that stops as soon as the fixpoint is reached. < is the strict order
(x <y iff (x <y)A(x #y)):

fix (0) (F)(<)(s)(L) = L,s
fix (n) (F)(<)(s) = etV s = fsvin
il;v < v,’ then fix (n — 1) (f)(<)(s)(v)

with:

fix((): N=(S§—= T, - T, xS8) = (T, — T, — bool)
— S — coStream(T, S)

15/53

The semantics of an expression e is:

[e], = CoF(f,s) where f = [e]>** and s = [e] /"

We use two auxiliary functions. If e is an expression and p an environment
which associates a value to a variable name:

o |[e]]/’)”it is the initial state of the transition function associated to e;

o [e]]itep is the step function.

We suppose the existence of a environment ~ for global definitions. It is
kept implicit in the following definitions.

~(x) returns either a value Val(v) or a node CoP(p,s).

16 /53

[pre €], = (nil, [e]"r")

[pre e]]srep = A(m,s).m [[e]]Step()

|[X]]In/t - 0

[x1; Step = As.(p(x),s)

[[C]]lmt = 0

[= As(cs)

|[(€1,...,)]]In/t — (I[e In/t B |Ie /n/t)

[(e1, -, e)]7 Step =)\s. /et(V,,S, [[e,]]p P(si))ieq1.n in

(Vl,...,) (51,_. n)

For this first semantics, we take nil = L

17/53

Fby

Two cases: either the first argument is a constant or not.

IIV fby e]]lnlt _ (IIe]]Imt

[v £by e]]Step(m, s) = m,letv,s= [[e]]f)te”(s) in(v,s)
ﬂel fby 62]]Imt — (None I[el]llnlt IIe Imt)

[e1 foy ez]]gtep(None, S1,52) = letw,s1 = [[el]]s ®P(s)in

vi,let vo,sp = |[e2]]ptep(s2) in

(Some(vz2), s1,52)
[e1 £y e2]]gtep(50me(v),51,52) = v,letvy,s; = [[el]]Step()i
let V2, S = |Iez]]Step(2)

(Some(vz), 51,52)

n
n

18/53

[f (er, .., en)]"
[f (er, ... en)]5 =
I (1, s en)]7
[f (e1,...,en) gfep

[1let node f (xi, ...

|Ie Inlt |[e]]Imt
.. n

As. let (vi,si = [[e,-]];fte
fo(vi, ..., vn),s

if v (f) = Val(fo)

fl |Ie Inlt |I]]ln/t

P(si))ier..n in

A(m, 5) /et(v,, 51 [[e,]] (5i))ie[1..n] in
letr,m = fom(vl, ey Vn) in
r,(m',s)

if v(f) = CoP(fo, fi)

xn) = el = 5 +[CoP(p,s)/f]

Step ()

where s = |[e]]p+[L/X1 /%) and p = As, (v, ..., V")'[[e]]p+[v1/x1, vn/]

19/53

Equations
If E is an equation, p is an environment, [[E]]l”’t is the initial state and
[[E]]‘Ztep is the step function. The semantics of an equation eq is:

|[E]]p |[E]] Init |[E]]5tep

IIP —_ e]]lmt |Ie]]lmt
[p = e]]Step = As.letv,s = |[e]]5tep(Yin[v|p],s

[[El and Ez]llnlt o (lIEl]]Imt |[E]]Inlt)

[E1 and Ez]];gtep = A(s1,9).let p1,51 = |[E1]]5tep(1) in
let p2, 52 = [[Ez]]Step(2) in
P1 + P2, (517 52)

[[rec E]]Inlt — |[E]]In/t

[rec E15 = Xs.fix (€| + 1) (s, ' [EL(5))(s)

|IE|| is the number of variables defined by E.

20/53

Let Def(E) = {x1, ..., Xn}, the set of defined variables in E.

[let E in e]]l”'t |[E]]I"'t [€ LT[J-/XL L/l

[let E in e’]]gte" A(s,s').let p', s = [E]3*P(s) in
let v/, s" = [[e]]f)_ti_eg("Yin
v (s, s)

[let rec E in e]]I"'t = |[e]]l'"t [e’ ;),Z&I-tJ_/xl, L /x0]
[let rec E in e]]pte” = N(s,s').Jet p,s = [rec E]]Step()in
let v',s" = [¢]]Step("Yin
Ay pre
v, (s,8)

21/53

Control Structures

Equations are extended with local definitions:

E = ..|localvinE |reset E every e | if e then E else E

v = x|xinite|xdefaulte

Expressions are extended with a construct to access the last value of a
stream:
e = ..|lastx

22/53

Environment

The construct local x in E declares x to be local in E.

The construct local x init e in E declares x to be local and the /ast
computed value of x to be initialized with the value of e.

The construct local x default ein E declares x to be local and the

default value of x to be the value of e, at instants where no definition of x

is given.

23/53

Conditionals over Equations

If e is an expression whose type is a sum type t = C; | ... | G,

® match ewith G; — E; | ... | G, — E, activates equation E; such
that J; is the first index such that e = G, with 1 < iy, ..., 0, < n.

® if e then E; else E, a short-cut for
match e with true — E; | false — E

E = ..|matchewithC—E |.. |[C—E

24 /53

Reset

Two ways:
® Recompute the initial state of E when the reset condition e is true or;

e duplicate the initial state of E and use this state every time e is true. 2

We adopt the later solution.

|IE]]’I0nit7 |IE]] ;)nit, IIG]] :)nit
= letv,s, = [[e]]f,te”sz in
let s; = if sy then sy else sy in
let p,s1 = |[E]]§te"sl in

Py (SOa S1, 52)

[reset E every e]]lp“it
[reset E every e]]lfte”(so7 s1,%2)

2This idea is due to Louis Mandel.
25/53

Hierarchical Automata

A automaton which describe a system with several modes and transitions
between them.

Such an automaton is characterized by:
e A finite set of states.

® |n every state, a set of equations with variables that are possibly local to
the state.

A set (possibly empty) of “weak transitions” (keyword until) which
define the active state for the next reaction.

A set (possibly empty) of “strong transitions” (keyword unless) which
define the active set of equations for the current reaction.

Transitions can be by “reset” (condition then) or by “history” (condition
continue).

By default, the initial state is the first in the list. If given, ... init se
defines the initial state of the automaton to be the value of se.

Rmq: Contrary to Scade 6 and Lucid Synchrone that implement [?], in
Zelus, weak and strong transitions cannot be mixed inside an automaton.
26 /53

The syntax is extended in the following way.

E := ..|automaton (S(p) — u wt)" init se®
| automaton (S(p) — u st)T init se®
u == localvinu|do E
st = unlesst"
wt = until ¢
t = ethen S(e,..,e) | e continue S(e,...,)
se = S(e,...,e)|if e then se else se

se stands for an expression which returns a state. It is used at the first
instant of activation or reset of the automaton.

27/53

Examples in Zelus

type t = Incr | Decr | Idle

let f(c) =
local o init O
do
match ¢ with
| Idle -> (* o keeps its previous wvalue, t.e., o = last o *)
do done
| Incr -> do o = last o + 1 done
| Decr -> do o = last o - 1 done
in o

28 /53

Examples in Zelus

let node controller(auto, error, input) = output where rec
automaton
| Manual -> do output = input unless auto then Auto
| Auto -> do output = run pid(p, i, d, error)
unless (not auto) then Manual

let node await(a) = go where rec
automaton
| Await -> do go = false unless a then Run
| Go -> do go = true done

let node abro(a, b, r) = go where rec
reset automaton
| Await -> do go = false
unless (run await(a) && run await(b))
then Go
| Go -> do go = true done
every r

20 /53

Semantics

30/53

Environment

The environement is complemented to possibly associate a default or initial
value to a variable.

pu=p+[v/x]| p+[v/default x] | [v/last x] | []

If p and p are two environments, we write pby p’ the completion of p with
default or initial values from p'.

This operation is used to define the value of a variable in

pby] = p

poy (¢ + [v/defaultx]) = (p+[v/x])byp’
pby (p +[v/lastx]) = (p+[v/x])by s
poy (¢ + [v/x]) = pby/y

If pis a pattern and v is a value, match v with p builds the environment
by matching v by p such that:

[vIx] [v/x]
[(vi, vw)[(p1,p2)] = [vilp] + [va|p2]

31/53

Notation: If p = p' + [v/x], p\x = p’

Let n=||E|| + 1.
[localxin E]]I"’t = [[E]]/"’t
[local xin E]]f)te”(s) = letp',s = fix(n)(\s, p’.[[E]]gfg,(s))(s) in
p'\x, s
[local xdefault vin E]]I"’t = [[E]]/"’t
[local x init vin E]]I"’t = (v, [[E]]I"’t

[1ocal x default vin E]>*F(s) =

let s = fix () (AP S-LELSD 1 etaure g (5))(8) i
p\x, s

[Llocal x init vin E]]Step(w s) =
let p','s = fix (n) (AP, S.LET D,y /10se (8))() i
p\x: (F(%),9)

32/53

Semantics for conditionals

The semantics for a conditional must consider the case where a branch
defines a value for a variable x in one branch but not the other branch. We
take the following convention:

e |f a variable x is declared with a default value v, then a missing
equation for x in a branch means that x = v in that branch.

e Otherwise, x = last x, that is, x keeps its previous value.

® |f x is declared with an initial value for 1ast x, this means that x has a
definition in every branch. Otherwise, there is a potential initialisation
issue which has to be checked by other means.

33/53

Semantics for Conditionals
The Initial State

|[match e with (C N E)IE[]. n]]]/n/t (lIe]]lmt IIE]]lmt B |[En]]ln/t

The Transition Function:

[match e with (C; — Ei)jc1..n)]]p P(s, 51,0y Sn) =
letv,s = I[e]]SteP()in
match v with
(C,' — let Pi,Si = IIE]]SteP)
pi by p[N\N;], (s 51,...,5) el
where N = Ujc1..n(Ni)and N; = Def (E;)

The Last Computed Value:

[1ast x], Init — ()
[1ast x]7 Step = MAs.p(lastx),s

34 /53

Hierarchical Automata

We consider here only the case where no initialisation state se is given.

35/53

Initial state of the transition function

Init

[automaton (5 (pi) — uj Wt'),-e[l,,n] P

let (51 = IIUI]] it)le[l .0 |

let (s! = [wt;]]p),6[1”,,] in

(510), false, (s1,---,5n), (S15---55n))
[automaton (5 (p,) — Uj Stj)ieL. n]]]’"’t =

let (S, - |[ul]]p)/E[l .n] in

let (S - IIStI]]p)IE 1..n] in

(510), false, (s, .- -,5n), (S5, ...,5h))

[automaton (Si(pi) — u; Wt,-),-e[l_n]]]itep(v, r,s,s') =
let (p,v,r),(s,s") = [(Si(pi) = ui wt;)jcpn.mly"(s,s") in
p,(v,r,s,s")

[automaton (Si(pi) — u; st,-),-e[lu,,]]];ftep(v, r,s,s') =
let (p,v,r),(s,s") = [(Si(pi) = i sti)icp.mly " (s,5")in
p,(v,r,s,s")

36 /53

ﬂ:(sl(pl) — Uj Wti)ie[l..n]]];J((Sla ey 5”)7 (517 ey 5;7)) =
match v with

Si(pi) — let p, s = [uil}(s) in
let (v, r),s; = [wt;]y"(s7) in
)) i€[1..n]

p,(v,r,(s1,-,5n), (51, Sh

H(Si(Pi) — uj Sti)ie[}..]]];’r((sb ”'75!7)7 (517 751/1)) =

let (v,r,(s],....,s)) =

match v with
(Si(Pi) — let (v, r),s,{ = [sti ;’r(s;) " >
(V, r, (Si""vs;)) i€[1..n]
inmatch v with
(s,-(p,-) = letp,s = [ul(s)in >
A CINEANCTRNES) i€[l..n]

37/53

[until t]]I”'t

[unless t

*]]Imt

[until t*]7"(s)

[unless t*]7"(s)
|[€]]In/t
[e then se t]]’”’t
[e continue se t

[],”

(s)

]]Inlt

IIt]]Inlt

I]:t*]llnlt

[t (s)
(1" (s)

O

(lIe]]lmt |[Se]]Inlt)
(lIe]]lmt |[$€]]Imt)

(v,r),s

38/53

[e then se t*] " ((s1,52), 53) =
let sy = if r then[e], Init olse s; in
let sy = if r then[se], [l else sy in
let s3 = if r then[t*]]"”t else s3 in
letc,s; = [[e]]SteP(1) in
if cthenlet v, s, = [se]3**F(sz) in (v, true), ((s1,52), 53)
elselet (v,r), sy = [t*];"(s)in (v, r), (s1,%2)
[e continue se t*] > ((s1, 52), 53) =
lets; = if r then [el, Init olse sq in
let sy = if r then[se], [l else sy in
let s3 = if r then[t*]]"”t else s3 in
letc,s; = [[e]]SteP(1) in
if cthenletv,sy, = |[se]]5tep(52) in (v, false), ((s1, s2), s3)
elselet (v,r),so = [t*] ;" (s) in (v, r), (s1,%2)

I[S(el,...,)]]In/t = |[e /”’t [[en]]/n/t
[S(e1, ..., en) ifep = /et(v,js, [e]3 Ste P(s1))ic[1.n] iN

S(Vl,...,),(51,--- n) 39/53

Interpretation

® The transition function associated with the automaton construct is
executed in an initial state.

® This state if of the form (ps, pr,s,s’). ps is the current state of the
automaton. It is initialised with the initial state of the automaton. pr is
the reset status. It is initialized with the value false. s is the state to
execute the code of the strong transitions; s’ is the state to execute the
body of the automaton; s’ is the state to execute the transitions.

® For an automaton with weak transition, the body is executed, then the
transitions.

e For an automaton with strong transitions, the code of transitions of the
current state are executed. This determines the active state. Then, the
corresponding body is executed.

40/53

Adding ODEs, zero-crossing and hybrid nodes.

41/53

A hybrid node

The language is extended with continuous-time operators.
der .. and up. that must only appear in the body of a hybrid node.

Idea: Interpret a hybrid node as a regular node

der xe
defines a state variable {cin; cout; dout} with three fields:

e the current value of x (input from the solver);
e the current derivative of x (output to the solver).

e the current value of x (output to the solver).

upe
defines a state variable {zin; zout} with two fields:
® a boolean value, true when e crosses zero (input from the solver).

® the current value of e (output to the solver).

Those states are used to communicate with the solver. 42/53

|[derx - e]]lnlt — |[]]Inlt

[der x = e]]gtep(s) =letv,s = [[e]]ﬁte"(s) in
[v/derx],s

[up e]]l”’t ({zin = false; zout = nil}, [[e]]l’”t

[up e]]gtep({zin, zout},s) =letv,s = [[e]]Step()in
zin, {zm,zout =v},s)

Let n= ||E|| + 1.

[localder x init vin E]]’"it =
({cin = 0.0; cout = v; dout = 0.0}, [e] ", [E])"")

[localder x init v in E]]Ste"({cm cout; dout},s) =
let o', s = fix (n) (Mo’ 75-[[E]],S,_t:§+[C,n/defau/tx][cout//astx](s))(s) in
0'\x, ({cin; cout = p'(x); dout = p'(der x)},s)

43/53

Provide access functions:
e cset(s,y) stores the position of the continuous state y into s;

(
(

® zset(s, z) sets the zero-crossing values;

® cget(s) output the position of the continuous state y from s;

® dget(s) outputs the derivative of the continuous state y from s;

® zget(s) outputs the zero-crossing values to be observed

44 /53

Hybrid Node

Let f be a hybrid node defined by let hybrid f p = e. Defines its

semantics CoP(f*,s) as if it were defined as a node (see slide 19). Defines
the following three functions:

® Derivative:
f4:S 1= (Y= Y)=Xs,x,y.letv,s = ft (cset(s,y)) x in dget(s)
® Zero-crossing function:

f2:S =1 — (Y = Zo)=As,x,y.letv,s = (cset(s,y)) x in zget(s)
e Qutput function:

foUt S — 1 — (Y = 0)=As,x,y.letv,s = f' (cset(s,y)) xinv
e Step function:
ffP .S Y 5Zi—»1—-0xSxY=
As,y,zi, x.let v,s = f* (zset(cset(s,y), zi)) xinv, (s, cget(s))

The input x is considered to be piece-wise constant during integration, i.e.,
the solver calls (f9sx): Y — Y.

45/53

The Simulation Loop [Bourke et al., 2015]

Alternate discrete steps and integration steps

[reinitialize]

reaction integrate

Zero-crossi ng event

0,5,y =P (s)(y)(z)(x) zo=F*(s)(x)(y)
y = fs)(x)(y)

The purpose of the compiler is to generate:

o fSP gathers all discrete state changes.
e fZ define the zero-crossing signals.

o 9 define the time derivative of continuous-state variables.

46 /53

The Simulation Loop [Bourke et al., 2015]

The execution can be defined as a function which is parameterised by two
functions csolve and zsolve.
csolve : (Y = Y') = Y — (Time x (Time — Y))
zsolve : (Y — Zo) — (Time — Y) — Time x Time — (Time x Zi)
Given f: Y — Y’ and y : Y, csolve(f)(y) = h,dky. dky is a dense

solution, that is:
y(t) =~ dky(t) for t € [0, h]

Given g : Y — Zo, zsolve(g)(dky)(h') = h, zi locates the zero-crossing of
g between time 0 and A
It either returns h = h' and zi = false' if no zero-crossing occurs;

or the earliest instant h € [0, h'] and the vector zi with for all k € [1..1],
zi[k] = true if g(y)[k] crosses zero.

47/53

Given a hybrid node f and semantics CoP(f*,s). Defines so, 9, fZ, f5tP

and access functions.

Let p: N — [an input signal. The simulation computes o such that:

A cyclic execution of:

1. The initial state is the discrete mode with lyg is a vector of zeros and zig
is a vector of false, i.e., lyp[i] = 0 for all i € cget(sp) and zip[i] = false

for all i € zget(sp).

2. In the discrete mode, compute:

t .
On, Sn+1,Ynt+1 = 5P s lyn Zin pn
Ipn+1 = Pn

3. In the integration mode, compute:

W dky, = csolve(f9 s, Ipn)(yn))
hp,ziny1 = zsolve(f? s, Ipn)(dky ,)(h),)
Iynt1 = dky(hn)

When no equation is given, streams keep their previous values.

48/53

This simulation interprets a hybrid node with an input of type / and an
output of type O as a stream function. It is also possible to return the
stream h as an extra output of this function.

Instead of taking a stream of values of type /, one can take a stream of
values of type (h: Time) x ([0, h] — I), that is, a duration h: Time C RT
and a function f : [0, h] — /.

Instead of returning a stream of values of type O, one can return of stream
of values of type (h: Time) x ([0, h] — O).

This time, the £, fZ, £StP_ f£oUt functions must be modified to take insto
account that the input is continuously changing.

The £°!* function is used in the integration mode to produce the output.

49/53

Alternatively

Instead of generating a single step function with a state that contains
positions, derivatives and zero-crossing information, and then specialise it,
define directly all the components of a hybrid expression:

hNode(T,T',S,Y, Zi, Zo) =
CoH (S—=VY =Y/,
S—Y — Zo,
S—Y =T,
S»Y>Zi-T—>T xSxY,
57
Y)

where the semantics value of an expression becomes of the form:
COH(fd, fz, fout, fstep7 S,y)

50/53

f9 defines the derivative;

f? defines the zero-crossings;

fout defines the output from the current discrete state and continuous
state;

£°'P defines the step function to be evaluated at a zero-crossing instant;
s is the initial discrete state;

y is the initial continuous state.

51/53

This is ongoing work

A preliminary prototype (June 2000); no hybrid constructs:
https://github.com/marcpouzet/zrun

A new one based on Zelus (Spring 2021):
https://github.com/INRIA/zelus, branch work. Hybrid constructs.

Purely functional OCaml code (except for code for debugging).

Use a generic library for the computation of fix-points 3. Some preliminary
work done by Antonin Reitz (Spring 2021).

Make the semantics more abstract, e.g.,:

® replace concrete values by a set (e.g., integers by intervals) in order to
perform set-based simulation;

® replace concrete values by a symbolic expressions.

3The library Fix https://gitlab.inria.fr/fpottier/fix by Francois Pottier.
52/53

https://github.com/marcpouzet/zrun
https://github.com/INRIA/zelus
https://gitlab.inria.fr/fpottier/fix

References |

[
]

& W & =

Benveniste, A., Bourke, T., Caillaud, B., Pagano, B., and Pouzet, M. (2014).

A Type-based Analysis of Causality Loops in Hybrid Systems Modelers.
In International Conference on Hybrid Systems: Computation and Control (HSCC), Berlin, Germany. ACM.

Benveniste, A., Bourke, T., Caillaud, B., and Pouzet, M. (2011).

Divide and recycle: types and compilation for a hybrid synchronous language.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES'11), Chicago, USA.

Bourke, T., Colaco, J.-L., Pagano, B., Pasteur, C., and Pouzet, M. (2015).

A Synchronous-based Code Generator For Explicit Hybrid Systems Languages.
In International Conference on Compiler Construction (CC), LNCS, London, UK.

Caspi, P. and Pouzet, M. (1998).

A Co-iterative Characterization of Synchronous Stream Functions.
In Coalgebraic Methods in Computer Science (CMCS'98), Electronic Notes in Theoretical Computer Science.
Extended version available as a VERIMAG tech. report no. 97—07 at www.di.ens.fr/~pouzet/bib/bib.html.

Edward, S. A. and Lee, E. A. (2003).

The semantics and execution of a synchronous block-diagram language.
Science of Computer Programming, 48:21-42.

Jacobs, B. and Rutten, J. (1997).

A tutorial on (co)algebras and (co)induction.

EATCS Bulletin, 62:222—-259.

Paulin-Mohring, C. (1995).

Circuits as streams in Coq, verification of a sequential multiplier.

Technical report, Laboratoire de |'Informatique du Parallélisme.
Available at http://www.ens-1lyon.fr:80/LIP/1lip/publis/.

53/53

