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Smart Contracts or Programmable Transactions
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Programmable Transactions

• How to make a secure transaction without a trusted third-party?
• You use a blockchain, a distributed and non forgeable ledger!
• Transactions are chosen and performed using a consensus protocol.

Bonus: they are programmable.
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You Said Programmable?

• Yes! We call them smart contracts.
• Smart contracts are publicly hosted and executed by the blockchain.
• The code of is not modifiable.
• Hence the contract trait.
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How Can End-Users Develop Smart Contracts?
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A Simple Accounting Task

• Our accountant Bill,
wants to develop, deploy and monitor a smart contract.

Informal spec
This contract collects deposits; only Alice can withdraw the collected coins.

• Bill can model it using a spreadsheet.
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The Spreadsheet

• Two inputs, user and deposit
• A state to compute the collected amount.
• One output, the operations to commit.
• Bill pulls down the last line to fill the spreadsheet.

A B C D
1 user deposit collected operations
2 =IF(A2 = “Alice”, 0, B2) =IF(A2 = “Alice”, SEND(“Alice”, B2), EMPTY())
3 =IF(A3 = “Alice”, 0, B3 + C2) =IF(A3 = “Alice”, SEND(“Alice”, B3+C3), EMPTY())

Bill’s Spreadsheet
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This What Bill’s Contract Looks Like

{ parameter unit ;
storage address ;
code { CDR ;

SENDER ;
CONTRACT unit ;
IF_NONE

{ NIL operation ; PAIR }
{ SWAP ;

DUP ;
DUG 2 ;
SENDER ;
COMPARE ;
EQ ;
IF { SWAP ;

NIL operation ;
DIG 2 ;
BALANCE ;
PUSH unit Unit ;
TRANSFER_TOKENS ;
CONS ;
PAIR }

{ DROP ; NIL operation ; PAIR } } } }

Bill’s Contract in Michelson
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The High-Level Version

type storage = address

type parameter = unit

let result (op: operation list)
: operation list * storage = (op, alice)

let main ((), alice : parameter * storage) :
operation list * storage =

let some_contract : unit contract option =
Tezos.get_contract_opt Tezos.sender in
match some_contract with
| Some(sender_contract) ->

if sender = alice then
result [Tezos.transaction

() Tezos.balance sender_contract]
else

result ([]:operation list)
| None ->

result ([]:operation list)

Bill’s Contract in Ligo
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Spreadsheets Are Easy To Use

• Spreadsheets is the most used computation platform.
• With the correct formulas, users can program autonomously.
• But, accessiblity may be an illusion.
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Spreadsheets Programming is Error Prone

• Until very recently, there where no
tools for static analysis.

• In 2012, JP Morgan lost about 6
billion dollars because of a
spreadsheet mistake.

• In 2010, the US federal budget “The
Path to Prosperity” proposal was
based on the flawed economic study
Growth in a Time of Debt by
Reinhart and Rogoff due to a
spreadsheet error.
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Finding a Good Tool

We want a balance between accessibility, reliability and expressivity.

Lisa

Accessibility

Reliability Expressivity

Question
How to provide end users a smart contract design interface?
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How Users Work on Spreadsheets
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Spreadsheets 101

Core constructs
• Spreadsheets define a matrix of cells.
• Cells can contain data or an expression.
• Expressions may depend on other cells using a coordinate system.

November 25, 2021 16 / 48



Spreadsheets 101

This what users could do to define natural numbers.
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Spreadsheet Facts

• In majority spreadsheets are
rectangular and grow vertically.

• Instead of defining each cell, they
pull them down.

• Such spreadsheets can be seen as
mutually recursive streams.

Daniel W. Barrowy et al., OOPSLA
SPLASH’18

Question
Is it possible to formalize structured spreadsheets are reactive programs?
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A Reactive Interpretation of Spreadsheets
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A Correspondence with Streams

In Haskell and Lustre you can have similar definitions for natural numbers.
• In Haskell

nat = 0 : map (+1) nat
• In Lustre

nat = 0 fby (nat + 1);
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Why a New Tool?

• However a correspondence is not
always clear.

• Consider the following definition of
Fibonacci.

Spreadsheet Definition of Fibonacci
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Corresponding Streams

Spreadsheet Definition of Fibonacci

The correspondence begins to be more difficult explain to Bill.
• In Haskell

fib = 1 : 1 : zipWith (+) fib (tail fib)
• In Lustre

fib = 1 fby f;
f = 1 -> fib + (pre fib);
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What About This One?

A More Complicated Spreadsheet
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Corresponding Streams

A More Complicated Spreadsheet

• In Haskell we have to define a mapping function and use the right tail.
map3 _ _ _ _ = []
map3 f (x:xs) (y:ys) (z:zs) = f x y z : map3 xs ys zs
plus3 x y z = x + y + z
a = 1 : 1 : 1 : map3 plus3 a (tail a) (tail (tail a))

• In Lustre we need more equations to add the right number of delay
a = 1 fby b;
b = 1 fby c;
c = 1 fby (1 -> b + (pre b) + (pre a));

Question
Is the accessiblity of spreadsheets due to explicit coordinates?
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About Existing Languages

• Haskell is expressive but lacks of a notion of time.
• Lustre is safe but lacks expressivity and time is implicit.

Questions
1 How to interpret references to cells?
2 How to define the right amounts of delay or tails?
3 How can we formalize the semantics of structured sheets?
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Lisa an Explicit Time Language
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Lisa 101

• At its core Lisa is a typed functional stream-processing language.
• In OCaml this program diverges:

let rec from x = x::from (x + 1)
let nat = from 0

• In Lisa it doesn’t:
let rec from =

fun x ->
(x :: thunk ((force from) (x+1)))

let nat = from 0
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How Structured Spreadsheets correspond with Lisa
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Correspondence Using the At Operator

• The coordinates are implemented with the At operator.
• It is used to reference values of streams.
• Natural numbers:

(** Syntactic sugar
x :* y = x :: thunk y **)

rec nat = 0 :*
rec nat_exp =
((force nat)@(fun line -> line-1) + 1)::nat_exp

• Fibonacci:
rec fib = 1 :* 1 :*

rec fib_exp =
(force fib)@(fun line -> line - 1)
+ (force fib)@(fun line -> line - 2)::fib_exp)
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And the Trickier One

A Complicated Spreadsheet

rec a = 1 :* 1 :* 1 :*
rec a_exp =

(force a)@(fun line -> line - 1)
+ (force a)@(fun line -> line - 2)
+ (force a)@(fun line -> line - 3)
:: a_exp

Implementation in Lisa
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From Spreadsheets to Lisa

• Referencing a cell n, is getting the n-th value of a column.
• To fetch the n-th value of a stream, we use the At operator.
• It forces the stream to be at least of length n.
• The progression of time is implicit and accessible when needed.
• At, uses the contextual time to compute the desired observation.
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Bill’s Contract in Lisa

(* Prelude *)

let id = fun x -> x

let pred = fun x -> x-1

(* Time observation operations *)
let previous = fun s -> (force s)@pred

let current = fun s -> (force s)@id

(** Syntactic sugar
x :* y = x :: thunk y **)

(* Blockchain operations *)
let send =

fun who ->
fun what -> [(who, what)]

let empty = []

(* Mutually recursive streams
for users, deposits, collected coins
and operations to commit *)

rec user = input "user" :: user

and deposit = input "deposit" :: deposit

and collected =
(if (current user) = "Alice" then 0
else (current deposit))

:* (rec next_collected =
(if (current user) = "Alice" then 0
else (current deposit)

+ (previous collected))
:: next_collected)

and operations =
(if (current user) = "Alice" then

send "Alice" (current deposit)
else empty)

:* (rec next_operations =
(if (current user) = "Alice" then

send "Alice"
((current deposit)
+ (previous collected))

else empty):: next_operations
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Formalization of Lisa
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Lisa’s Syntax

t ::= x Variable
| λx .t Abstraction
| t t Application
| force t Force
| thunk t Thunk
| t :: t Stream Constructor
| t@t Observation
| (t) Tuples
| µx .(t) Recursive Tuple
| δ(t) Primitive Application
| c Constants

Lisa Syntax
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Call-By-Push-Value: Computations Do and Values Are!

• Call-By-Push-Value (CBPV) distinguishes values and computations
syntactically.

• Computations can be suspended as values using thunks.
• Thunked computations can be resumed by forcing them.
• Functions are computations, not values.
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From Lisa to CBPV
• Lisa is translated to CBPV with Streams and the At operator.
• CBPV with Streams and At is formalized using a monadic translation.
• The monad abstracts the progress of time.

Structured Spreadsheet Lisa CBPV + Streams + At

CBPV + Streams

Monadic Translation

Compilation Scheme
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What is Done
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Front-End of an Interpreter for Structured Spreadsheets

• Formalized a spreadsheet system to design smart contracts.
• An implementation of a Lisa interpreter.
• A proof of concept compiler to translate a structured spreadsheet to CBPV.
• Example contracts written as structured spreadsheets.
• Code, examples and work in progress:
https://gitlab.com/cg-thesis/lisa

• Started the formalization of Lisa and its compilation to CPBV.
• Started the correctness proof of the compilation.
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Future Work
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Generation of Michelson Code

• Clock-directed code generation a la Lustre.
• Incrementalization of the program to get a reactive function by the derivative

of the program.

Structured Spreadsheet Lisa CBPV + Streams + At

CBPV + Streams

Michelson

Monadic Translation

?

Compilation Scheme
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Clock-Directed Code Generation

• The compilation of higher-order reactive languages is still an open question.
• In his thesis, Adrien Guatto studied the usage of integer clocks on

compilation of functional reactive programs to digital circuits (e.g. VHDL).
• We want to investigate the possibility to generate an iterative step function.

November 25, 2021 43 / 48



Compilation by Static Differentiation

• In ESOP’19, Yann Régis-Gianas and his coauthors have shown a novel
technique to compute a derivative of a functional program, that is for all
function f : A → B:

DJf K : A → ∆A → ∆B
f (x ⊕ dx) = f x ⊕ DJf K x dx

• A spreadsheet defines a function f from list of calls to list of operations.
• The underlying smart contract may be an incrementalization of f , i.e. DJf K
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Open Questions

• What is the class of contracts that can be naturally encoded as structured
spreadsheets?

• The At operator is very expressive but, can we statically verify its proper
usage, i.e. only observe past or current, non-cyclic, values ?
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Roadmap

• Finish the front-end with a usable proof-of-concept.
• Investigate the two possible low-level code generation.
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Questions ?
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