
Using Structured Spreadsheets to Develop Smart
Contracts

Colin González

CIFRE Ph.D. Student
Nomadic Labs - Irif, Université de Paris

Under the supervision of

Ralf Treinen (IRIF, Université de Paris) Benjamin Canou (Nomadic Labs)

Adrien Guatto (IRIF, Université de Paris) Yann Régis-Gianas (Nomadic Labs)

2021-11-26

November 25, 2021 1 / 48

Smart Contracts or Programmable Transactions

November 25, 2021 2 / 48

Programmable Transactions

• How to make a secure transaction without a trusted third-party?
• You use a blockchain, a distributed and non forgeable ledger!
• Transactions are chosen and performed using a consensus protocol.

Bonus: they are programmable.

November 25, 2021 3 / 48

Programmable Transactions

• How to make a secure transaction without a trusted third-party?
• You use a blockchain, a distributed and non forgeable ledger!
• Transactions are chosen and performed using a consensus protocol.

Bonus: they are programmable.

November 25, 2021 3 / 48

You Said Programmable?

• Yes! We call them smart contracts.
• Smart contracts are publicly hosted and executed by the blockchain.
• The code of is not modifiable.
• Hence the contract trait.

November 25, 2021 4 / 48

How Can End-Users Develop Smart Contracts?

November 25, 2021 5 / 48

A Simple Accounting Task

• Our accountant Bill,
wants to develop, deploy and monitor a smart contract.

Informal spec
This contract collects deposits; only Alice can withdraw the collected coins.

• Bill can model it using a spreadsheet.

November 25, 2021 6 / 48

The Spreadsheet

• Two inputs, user and deposit
• A state to compute the collected amount.
• One output, the operations to commit.
• Bill pulls down the last line to fill the spreadsheet.

A B C D
1 user deposit collected operations
2 =IF(A2 = “Alice”, 0, B2) =IF(A2 = “Alice”, SEND(“Alice”, B2), EMPTY())
3 =IF(A3 = “Alice”, 0, B3 + C2) =IF(A3 = “Alice”, SEND(“Alice”, B3+C3), EMPTY())

Bill’s Spreadsheet

November 25, 2021 7 / 48

The Spreadsheet

• Two inputs, user and deposit
• A state to compute the collected amount.
• One output, the operations to commit.
• Bill pulls down the last line to fill the spreadsheet.

A B C D
1 user deposit collected operations
2 =IF(A2 = “Alice”, 0, B2) =IF(A2 = “Alice”, SEND(“Alice”, B2), EMPTY())
3 =IF(A3 = “Alice”, 0, B3 + C2) =IF(A3 = “Alice”, SEND(“Alice”, B3+C3), EMPTY())

Bill’s Spreadsheet

November 25, 2021 7 / 48

The Spreadsheet

• Two inputs, user and deposit
• A state to compute the collected amount.
• One output, the operations to commit.
• Bill pulls down the last line to fill the spreadsheet.

A B C D
1 user deposit collected operations
2 =IF(A2 = “Alice”, 0, B2) =IF(A2 = “Alice”, SEND(“Alice”, B2), EMPTY())
3 =IF(A3 = “Alice”, 0, B3 + C2) =IF(A3 = “Alice”, SEND(“Alice”, B3+C3), EMPTY())

Bill’s Spreadsheet

November 25, 2021 7 / 48

The Spreadsheet

• Two inputs, user and deposit
• A state to compute the collected amount.
• One output, the operations to commit.
• Bill pulls down the last line to fill the spreadsheet.

A B C D
1 user deposit collected operations
2 =IF(A2 = “Alice”, 0, B2) =IF(A2 = “Alice”, SEND(“Alice”, B2), EMPTY())
3 =IF(A3 = “Alice”, 0, B3 + C2) =IF(A3 = “Alice”, SEND(“Alice”, B3+C3), EMPTY())

Bill’s Spreadsheet

November 25, 2021 7 / 48

This What Bill’s Contract Looks Like

{ parameter unit ;
storage address ;
code { CDR ;

SENDER ;
CONTRACT unit ;
IF_NONE

{ NIL operation ; PAIR }
{ SWAP ;

DUP ;
DUG 2 ;
SENDER ;
COMPARE ;
EQ ;
IF { SWAP ;

NIL operation ;
DIG 2 ;
BALANCE ;
PUSH unit Unit ;
TRANSFER_TOKENS ;
CONS ;
PAIR }

{ DROP ; NIL operation ; PAIR } } } }

Bill’s Contract in Michelson

November 25, 2021 8 / 48

The High-Level Version

type storage = address

type parameter = unit

let result (op: operation list)
: operation list * storage = (op, alice)

let main ((), alice : parameter * storage) :
operation list * storage =

let some_contract : unit contract option =
Tezos.get_contract_opt Tezos.sender in
match some_contract with
| Some(sender_contract) ->

if sender = alice then
result [Tezos.transaction

() Tezos.balance sender_contract]
else

result ([]:operation list)
| None ->

result ([]:operation list)

Bill’s Contract in Ligo

November 25, 2021 9 / 48

Spreadsheets Are Easy To Use

• Spreadsheets is the most used computation platform.
• With the correct formulas, users can program autonomously.
• But, accessiblity may be an illusion.

November 25, 2021 10 / 48

Spreadsheets Programming is Error Prone

• Until very recently, there where no
tools for static analysis.

• In 2012, JP Morgan lost about 6
billion dollars because of a
spreadsheet mistake.

• In 2010, the US federal budget “The
Path to Prosperity” proposal was
based on the flawed economic study
Growth in a Time of Debt by
Reinhart and Rogoff due to a
spreadsheet error.

November 25, 2021 11 / 48

Spreadsheets Programming is Error Prone

• Until very recently, there where no
tools for static analysis.

• In 2012, JP Morgan lost about 6
billion dollars because of a
spreadsheet mistake.

• In 2010, the US federal budget “The
Path to Prosperity” proposal was
based on the flawed economic study
Growth in a Time of Debt by
Reinhart and Rogoff due to a
spreadsheet error.

November 25, 2021 11 / 48

Finding a Good Tool

We want a balance between accessibility, reliability and expressivity.

Lisa

Accessibility

Reliability Expressivity

Question
How to provide end users a smart contract design interface?

November 25, 2021 12 / 48

This Presentation

1 Introduction
Smart Contracts or Programmable Transactions
How Can End-Users Develop Smart Contracts?

2 Structured Programming on Spreadsheet or Pull-Down Programming
How Users Work on Spreadsheets
A Reactive Interpretation of Spreadsheets

3 Lisa a Smart Contract DSL with Explicit Time
Lisa an Explicit Time Language
How Structured Spreadsheets correspond with Lisa
Formalization of Lisa

4 Ongoing and Future Work
What is Done
Future Work

5 Questions

November 25, 2021 13 / 48

1 Introduction
Smart Contracts or Programmable Transactions
How Can End-Users Develop Smart Contracts?

2 Structured Programming on Spreadsheet or Pull-Down Programming
How Users Work on Spreadsheets
A Reactive Interpretation of Spreadsheets

3 Lisa a Smart Contract DSL with Explicit Time
Lisa an Explicit Time Language
How Structured Spreadsheets correspond with Lisa
Formalization of Lisa

4 Ongoing and Future Work
What is Done
Future Work

5 Questions

November 25, 2021 14 / 48

How Users Work on Spreadsheets

November 25, 2021 15 / 48

Spreadsheets 101

Core constructs
• Spreadsheets define a matrix of cells.
• Cells can contain data or an expression.
• Expressions may depend on other cells using a coordinate system.

November 25, 2021 16 / 48

Spreadsheets 101

This what users could do to define natural numbers.

November 25, 2021 17 / 48

Spreadsheet Facts

• In majority spreadsheets are
rectangular and grow vertically.

• Instead of defining each cell, they
pull them down.

• Such spreadsheets can be seen as
mutually recursive streams.

Daniel W. Barrowy et al., OOPSLA
SPLASH’18

Question
Is it possible to formalize structured spreadsheets are reactive programs?

November 25, 2021 18 / 48

A Reactive Interpretation of Spreadsheets

November 25, 2021 19 / 48

A Correspondence with Streams

In Haskell and Lustre you can have similar definitions for natural numbers.
• In Haskell

nat = 0 : map (+1) nat
• In Lustre

nat = 0 fby (nat + 1);

November 25, 2021 20 / 48

Why a New Tool?

• However a correspondence is not
always clear.

• Consider the following definition of
Fibonacci.

Spreadsheet Definition of Fibonacci

November 25, 2021 21 / 48

Corresponding Streams

Spreadsheet Definition of Fibonacci

The correspondence begins to be more difficult explain to Bill.
• In Haskell

fib = 1 : 1 : zipWith (+) fib (tail fib)
• In Lustre

fib = 1 fby f;
f = 1 -> fib + (pre fib);

November 25, 2021 22 / 48

What About This One?

A More Complicated Spreadsheet

November 25, 2021 23 / 48

Corresponding Streams

A More Complicated Spreadsheet

• In Haskell we have to define a mapping function and use the right tail.
map3 _ _ _ _ = []
map3 f (x:xs) (y:ys) (z:zs) = f x y z : map3 xs ys zs
plus3 x y z = x + y + z
a = 1 : 1 : 1 : map3 plus3 a (tail a) (tail (tail a))

• In Lustre we need more equations to add the right number of delay
a = 1 fby b;
b = 1 fby c;
c = 1 fby (1 -> b + (pre b) + (pre a));

Question
Is the accessiblity of spreadsheets due to explicit coordinates?

November 25, 2021 24 / 48

About Existing Languages

• Haskell is expressive but lacks of a notion of time.
• Lustre is safe but lacks expressivity and time is implicit.

Questions
1 How to interpret references to cells?
2 How to define the right amounts of delay or tails?
3 How can we formalize the semantics of structured sheets?

November 25, 2021 25 / 48

1 Introduction
Smart Contracts or Programmable Transactions
How Can End-Users Develop Smart Contracts?

2 Structured Programming on Spreadsheet or Pull-Down Programming
How Users Work on Spreadsheets
A Reactive Interpretation of Spreadsheets

3 Lisa a Smart Contract DSL with Explicit Time
Lisa an Explicit Time Language
How Structured Spreadsheets correspond with Lisa
Formalization of Lisa

4 Ongoing and Future Work
What is Done
Future Work

5 Questions

November 25, 2021 26 / 48

Lisa an Explicit Time Language

November 25, 2021 27 / 48

Lisa 101

• At its core Lisa is a typed functional stream-processing language.
• In OCaml this program diverges:

let rec from x = x::from (x + 1)
let nat = from 0

• In Lisa it doesn’t:
let rec from =

fun x ->
(x :: thunk ((force from) (x+1)))

let nat = from 0

November 25, 2021 28 / 48

How Structured Spreadsheets correspond with Lisa

November 25, 2021 29 / 48

Correspondence Using the At Operator

• The coordinates are implemented with the At operator.
• It is used to reference values of streams.
• Natural numbers:

(** Syntactic sugar
x :* y = x :: thunk y **)

rec nat = 0 :*
rec nat_exp =
((force nat)@(fun line -> line-1) + 1)::nat_exp

• Fibonacci:
rec fib = 1 :* 1 :*

rec fib_exp =
(force fib)@(fun line -> line - 1)
+ (force fib)@(fun line -> line - 2)::fib_exp)

November 25, 2021 30 / 48

And the Trickier One

A Complicated Spreadsheet

rec a = 1 :* 1 :* 1 :*
rec a_exp =

(force a)@(fun line -> line - 1)
+ (force a)@(fun line -> line - 2)
+ (force a)@(fun line -> line - 3)
:: a_exp

Implementation in Lisa

November 25, 2021 31 / 48

From Spreadsheets to Lisa

• Referencing a cell n, is getting the n-th value of a column.
• To fetch the n-th value of a stream, we use the At operator.
• It forces the stream to be at least of length n.
• The progression of time is implicit and accessible when needed.
• At, uses the contextual time to compute the desired observation.

November 25, 2021 32 / 48

Bill’s Contract in Lisa

(* Prelude *)

let id = fun x -> x

let pred = fun x -> x-1

(* Time observation operations *)
let previous = fun s -> (force s)@pred

let current = fun s -> (force s)@id

(** Syntactic sugar
x :* y = x :: thunk y **)

(* Blockchain operations *)
let send =

fun who ->
fun what -> [(who, what)]

let empty = []

(* Mutually recursive streams
for users, deposits, collected coins
and operations to commit *)

rec user = input "user" :: user

and deposit = input "deposit" :: deposit

and collected =
(if (current user) = "Alice" then 0
else (current deposit))

:* (rec next_collected =
(if (current user) = "Alice" then 0
else (current deposit)

+ (previous collected))
:: next_collected)

and operations =
(if (current user) = "Alice" then

send "Alice" (current deposit)
else empty)

:* (rec next_operations =
(if (current user) = "Alice" then

send "Alice"
((current deposit)
+ (previous collected))

else empty):: next_operations

November 25, 2021 33 / 48

Formalization of Lisa

November 25, 2021 34 / 48

Lisa’s Syntax

t ::= x Variable
| λx .t Abstraction
| t t Application
| force t Force
| thunk t Thunk
| t :: t Stream Constructor
| t@t Observation
| (t) Tuples
| µx .(t) Recursive Tuple
| δ(t) Primitive Application
| c Constants

Lisa Syntax

November 25, 2021 35 / 48

Call-By-Push-Value: Computations Do and Values Are!

• Call-By-Push-Value (CBPV) distinguishes values and computations
syntactically.

• Computations can be suspended as values using thunks.
• Thunked computations can be resumed by forcing them.
• Functions are computations, not values.

November 25, 2021 36 / 48

From Lisa to CBPV
• Lisa is translated to CBPV with Streams and the At operator.
• CBPV with Streams and At is formalized using a monadic translation.
• The monad abstracts the progress of time.

Structured Spreadsheet Lisa CBPV + Streams + At

CBPV + Streams

Monadic Translation

Compilation Scheme

November 25, 2021 37 / 48

1 Introduction
Smart Contracts or Programmable Transactions
How Can End-Users Develop Smart Contracts?

2 Structured Programming on Spreadsheet or Pull-Down Programming
How Users Work on Spreadsheets
A Reactive Interpretation of Spreadsheets

3 Lisa a Smart Contract DSL with Explicit Time
Lisa an Explicit Time Language
How Structured Spreadsheets correspond with Lisa
Formalization of Lisa

4 Ongoing and Future Work
What is Done
Future Work

5 Questions

November 25, 2021 38 / 48

What is Done

November 25, 2021 39 / 48

Front-End of an Interpreter for Structured Spreadsheets

• Formalized a spreadsheet system to design smart contracts.
• An implementation of a Lisa interpreter.
• A proof of concept compiler to translate a structured spreadsheet to CBPV.
• Example contracts written as structured spreadsheets.
• Code, examples and work in progress:
https://gitlab.com/cg-thesis/lisa

• Started the formalization of Lisa and its compilation to CPBV.
• Started the correctness proof of the compilation.

November 25, 2021 40 / 48

https://gitlab.com/cg-thesis/lisa

Future Work

November 25, 2021 41 / 48

Generation of Michelson Code

• Clock-directed code generation a la Lustre.
• Incrementalization of the program to get a reactive function by the derivative

of the program.

Structured Spreadsheet Lisa CBPV + Streams + At

CBPV + Streams

Michelson

Monadic Translation

?

Compilation Scheme

November 25, 2021 42 / 48

Clock-Directed Code Generation

• The compilation of higher-order reactive languages is still an open question.
• In his thesis, Adrien Guatto studied the usage of integer clocks on

compilation of functional reactive programs to digital circuits (e.g. VHDL).
• We want to investigate the possibility to generate an iterative step function.

November 25, 2021 43 / 48

Compilation by Static Differentiation

• In ESOP’19, Yann Régis-Gianas and his coauthors have shown a novel
technique to compute a derivative of a functional program, that is for all
function f : A → B:

DJf K : A → ∆A → ∆B
f (x ⊕ dx) = f x ⊕ DJf K x dx

• A spreadsheet defines a function f from list of calls to list of operations.
• The underlying smart contract may be an incrementalization of f , i.e. DJf K

November 25, 2021 44 / 48

Open Questions

• What is the class of contracts that can be naturally encoded as structured
spreadsheets?

• The At operator is very expressive but, can we statically verify its proper
usage, i.e. only observe past or current, non-cyclic, values ?

November 25, 2021 45 / 48

Roadmap

• Finish the front-end with a usable proof-of-concept.
• Investigate the two possible low-level code generation.

November 25, 2021 46 / 48

1 Introduction
Smart Contracts or Programmable Transactions
How Can End-Users Develop Smart Contracts?

2 Structured Programming on Spreadsheet or Pull-Down Programming
How Users Work on Spreadsheets
A Reactive Interpretation of Spreadsheets

3 Lisa a Smart Contract DSL with Explicit Time
Lisa an Explicit Time Language
How Structured Spreadsheets correspond with Lisa
Formalization of Lisa

4 Ongoing and Future Work
What is Done
Future Work

5 Questions

November 25, 2021 47 / 48

Questions ?

November 25, 2021 48 / 48

	Introduction
	Smart Contracts or Programmable Transactions
	How Can End-Users Develop Smart Contracts?

	Structured Programming on Spreadsheet or Pull-Down Programming
	How Users Work on Spreadsheets
	A Reactive Interpretation of Spreadsheets

	Lisa a Smart Contract DSL with Explicit Time
	Lisa an Explicit Time Language
	How Structured Spreadsheets correspond with Lisa
	Formalization of Lisa

	Ongoing and Future Work
	What is Done
	Future Work

	Questions

	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

