
Interactive verification of Lustre programs in Vélus

Timothy Bourke Paul Jeanmaire Marc Pouzet

ENS, Inria Parkas team

Synchron’21, November 26



Interactive verification of synchronous programs

Goal: prove properties of streams in a program

node f (r : bool) returns (n : int)

var up : bool;

let

up = true fby ((up and n < 9) or (not up and n <= 1));

n = 0 fby (if up then n + 1 else n - 1);

tel

Show that values of stream n stay between 0 and 10

Interactive approach:

I load definitions in the proof assistant (ITP)

I use reasoning techniques to manipulate the goal/hypotheses

I obtain a mathematical proof of the result



Interactive verification of synchronous programs

Goal: prove properties of streams in a program

node f (r : bool) returns (n : int)

var up : bool;

let

up = true fby ((up and n < 9) or (not up and n <= 1));

n = 0 fby (if up then n + 1 else n - 1);

tel

Show that values of stream n stay between 0 and 10

Interactive approach:

I load definitions in the proof assistant (ITP)

I use reasoning techniques to manipulate the goal/hypotheses

I obtain a mathematical proof of the result



Interactive verification of synchronous programs

Goal: prove properties of streams in a program

node f (r : bool) returns (n : int)

var up : bool;

let

up = true fby ((up and n < 9) or (not up and n <= 1));

n = 0 fby (if up then n + 1 else n - 1);

tel

Show that values of stream n stay between 0 and 10

Interactive approach:

I load definitions in the proof assistant (ITP)

I use reasoning techniques to manipulate the goal/hypotheses

I obtain a mathematical proof of the result



Interactive verification of synchronous programs

Goal: prove properties of streams in a program

node f (r : bool) returns (n : int)

var up : bool;

let

up = true fby ((up and n < 9) or (not up and n <= 1));

n = 0 fby (if up then n + 1 else n - 1);

tel

Show that values of stream n stay between 0 and 10

Interactive approach:

I load definitions in the proof assistant (ITP)

I use reasoning techniques to manipulate the goal/hypotheses

I obtain a mathematical proof of the result



Interactive verification in Vélus

Untyped
Lustre

Lustre NLustre

Stc

Assembly Clight Obc

parsing elaboration transcription

i-translation

s-translation

generationcompilationprinting

unnesting &
distribution

expression
initialization

sche-
duling

fusion
optimization

argument
initializationCompCert

dataflow

transition systems

imperative



Interactive verification in Vélus

Untyped
Lustre

Lustre NLustre

Stc

Assembly Clight Obc

parsing elaboration transcription

i-translation

s-translation

generationcompilationprinting

unnesting &
distribution

expression
initialization

sche-
duling

fusion
optimization

argument
initializationCompCert

dataflow

transition systems

imperative

Correction theorem (simplified)

∀f , xs, ys, f (xs) ↓ ys =⇒
∃T ∈ Traces (compile f ),T ≡ (xs, ys)



Interactive verification in Vélus

Untyped
Lustre

Lustre NLustre

Stc

Assembly Clight Obc

parsing elaboration transcription

i-translation

s-translation

generationcompilationprinting

unnesting &
distribution

expression
initialization

sche-
duling

fusion
optimization

argument
initializationCompCert

dataflow

transition systems

imperative

Correction theorem (simplified)

∀f , xs, ys, f (xs) ↓ ys =⇒
∃T ∈ Traces (compile f ),T ≡ (xs, ys)

demo



Using previous works

Cécile Dumas Canovas

Deductive methods for proof of
Lustre programs

PhD thesis, 2000

Contents
I Example of program

verification (train)

I Translation from Lustre to
Atelier B

I Proof principles for Lustre

I From Lustre to PVS

I Thoughts on refinement



Using previous works

Cécile Dumas Canovas

Deductive methods for proof of
Lustre programs

PhD thesis, 2000

Contents
I Example of program

verification (train)

I Translation from Lustre to
Atelier B

I Proof principles for Lustre

I From Lustre to PVS

I Thoughts on refinement



Using previous works

Cécile Dumas Canovas

Deductive methods for proof of
Lustre programs

PhD thesis, 2000

Contents
I Example of program

verification (train)

I Translation from Lustre to
Atelier B

I Proof principles for Lustre

I From Lustre to PVS

I Thoughts on refinement



Three different encodings of streams

1. Temporal & consecutive representations: N→ Val

2. Co-induction with infinite proof principle (≈ Vélus)

3. Kahn streams with a principle of continuous induction
I the set of streams is a CPO
I with a smallest element ε
I stream operations are defined as least fix-points



Three different encodings of streams

1. Temporal & consecutive representations: N→ Val

2. Co-induction with infinite proof principle (≈ Vélus)

3. Kahn streams with a principle of continuous induction
I the set of streams is a CPO
I with a smallest element ε
I stream operations are defined as least fix-points



Three different encodings of streams

1. Temporal & consecutive representations: N→ Val

2. Co-induction with infinite proof principle (≈ Vélus)

3. Kahn streams with a principle of continuous induction
I the set of streams is a CPO
I with a smallest element ε
I stream operations are defined as least fix-points



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥

I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



Using previous works

A constructive denotational semantics for Kahn networks in CoqChristine Paulin-MohringINRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

July 18, 2007

AbstractSemantics of programming languages and interactive environments for the development of proofs and

programs are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of

a simple language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel

programs (now called Kahn networks) as stream transformers based on the theory of complete partial orders

(cpos). A restriction of this language to synchronous programs is the basis of the data-flow Lustre language

which is used for the development of critical embedded systems [14, 10].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of an increasing sequence of elements. This is different from what G. Kahn developed for

the standard Coq library where only the existence of lubs (for arbitrary directed sets) is required, giving no

way to explicitly compute a fixpoint. We define a cpo structure for the type of possibly infinite streams. It

is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal of

having a concept closed by composition and recursion. The library is illustrated by the example taken from

the original paper as well as the Sieve of Eratosthenes, an example of a dynamic network.1 Introduction
Semantics of programming languages and interactive environments for the development of proofs and programs

are two important aspects of Gilles Kahn’s scientific contributions. In his paper “The semantics of a simple

language for parallel programming” [11], he proposed an interpretation of (deterministic) parallel programs

(now called Kahn networks) as streams transformers based on the theory of complete partial orders (cpos). A

restriction of this language to synchronous programs is the basis of the data-flow Lustre language [14, 10] which

is used now for the development of critical embedded systems. Because of the elegance and generality of the

model, Kahn networks are also a source of inspiration for extensions of the data-flow synchronous paradigm to

higher-order constructions [7] or to more permissive models of synchrony [8].

We present a formalization of this seminal paper in the Coq proof assistant [4, 15]. For that purpose,

we developed a general library for cpos. Our cpos are defined with an explicit function computing the least

upper bound (lub) of a monotonic sequence of elements. This is different from what G. Kahn developed for

the standard Coq libraries where only the existence of lubs is required, giving no way to explicitly compute a

fixpoint. However, Kahn’s library was intended as the background for a computer formalisation of the paper

“Concrete Domains” by G. Kahn and G. Plotkin [13] and it covers general cpos with the existence of a lub

for arbitrary directed sets while our work only considers ω-cpos with lubs on monotonic sequences which is a

sufficent framework for modeling Kahn networks.
We define a cpo structure for the type of possibly infinite streams. This is done using a coinductive type in

Coq with two constructors, one for adding an element in front of a stream, the second constructor add a silent

step Eps. From the structural point of view, our streams are infinite objects, this is consistent with the fact

that these streams are models for communication links which are continuously open even if there is no trafic

on the line. However, we identify the empty stream with the infinite stream with only Eps constructors such

that our data type covers both finite and infinite streams. We define the prefix order on this data type and the

corresponding equality. We also develop useful basic functions: the functions for head, tail and append used

in [11] but also a filtering and a map function.It is then possible to define formally what is a Kahn network and what is its semantics, achieving the goal

of having a concept closed by composition and recursion. A Kahn network will be defined by a concrete set of
1

demo

Christine Paulin-Mohring

A constructive denotational sema-
ntics for Kahn networks in Coq

From semantics to CS, 2007

Contents
I General library for CPOs

I Encoding of streams
s := Eps s | Cons a s

⊥ := Eps ⊥
I Primitive stream functions

I Example: modeling a
(recursive) Kahn network



::::::::::::
Conclusion, discussion

Done

I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?



::::::::::::
Conclusion, discussion

Done
I Reproducing old results in the context of Vélus/Coq ITP

I Identify best methods and use it to give a natural semantics
to the full language

I Verify some small programs with clocks

To do
I Verify more (parameterized) programs, new proof techniques

I Link with the semantic model of Vélus

Kahn Lustre

verif

? compilation

I Is the Kahn semantics suitable for some compilation steps?

I What about the existence of a semantics?


