
Synchronous Logical Execution Time:
towards formal verification

Synchron’21

Fabien Siron <fabien.siron@krono-safe.com>

November 24, 2021

Agenda

2
November 24, 2021

• Context and motivation

• synchronous Logical Execution Time (sLET)

• The PsyC language

• Overview of the PsyC semantics

• Toward Formal Verification

• Conclusion/Perspectives

Safety-Critical Real-Time Systems

3
November 24, 2021

• Krono-Safe:

– Software provider in the context of safety-critical systems

• Domains: nuclear, avionics…

• Certification issues:

– Predictability & Reproducibility

– Temporal and functional requirements

• Common solution:

– Use high-level deterministic formalisms

– Verify high-level requirements using formal methods

Motivation: modeling of real-time systems

November 24, 2021
4

• Classical example: periodic real-time

Task1

Task0

Scheduling
Tables

Motivation: modeling of real-time systems

November 24, 2021
5

• The synchronous approach (Esterel, Lustre [1]):

– Model only activation in logical time

– Traditional real-time interpretation:

• Bind logical clocks to physical clocks (e.g. timer)

• Synchronous cycle computation can use all physical time
until next cycle triggering

Task1

Task0
Logical View:

Physical View:

Motivation: modeling of real-time systems

November 24, 2021
6

• Problem: modeling long-period tasks

– Invisible in the synchronous model

– Consider than the duration of task 2 is longer than
the duration between successive cycle triggers:

Task1

Task0

Physical View:

Logical View:

Motivation: modeling of real-time systems

November 24, 2021
7

• Problem: modeling long-period tasks

– Possible synchronous solution: retiming/slicing

– BUT: static and manual slicing is difficult and non-
portable

Task1

Task0

Task1'

Physical View:

Logical View:

Motivation: modeling of real-time systems

November 24, 2021
8

• Logical Execution Time [2]: extension of synchrony

– Specify the logical time cycle a task may span

– Classical synchronous composition is lost, but

– Real-time interpretation is more general

➢Contract separating application design and platform resource

Task1

Task0

Physical View:

Logical View:

The synchronous LET paradigm

November 25, 2021
9

• A synchronous extension of LET: PsyC [4]

– Given a statement advance which fixes the bounds of a logical
interval:

𝒂𝒅𝒗𝒂𝒏𝒄𝒆 𝟓 𝒘𝒊𝒕𝒉 𝒎𝒊𝒏;
𝒂𝒅𝒗𝒂𝒏𝒄𝒆 𝟏 𝒘𝒊𝒕𝒉 𝒉𝒐𝒖𝒓

≠ 𝒂𝒅𝒗𝒂𝒏𝒄𝒆 𝟔𝟓 𝒘𝒊𝒕𝒉 𝒎𝒊𝒏

– Contrary to classical LET, time is not cumulative

– Bounds are relative to the ticks of some logical clocks

Logical Execution Time: temporal requirements

November 24, 2021
13

• A typical verification problem: end-to-end latencies [3]

Task1

Task2

Scheduling
Tables

Task0

Inputs

Outputs

The PsyC language: concepts

November 24, 2021
14

• Primary temporal Sources
– generating global rhythms

– most often, only one linked to real time

• Periodic Clocks
– subdivising source ticks

• Program reactions
– may span a fixed interval: sLET interval durations

• Temporal variables
– share values between agents

– persistent values and values updated on sLET interval bounds

The PsyC language

November 24, 2021
15

• Produced by Krono-Safe, dedicated to the safety-critical real-time
software integration.
– Based on a technology developed by the CEA (Oasis and PharOS projets)

• Implement the (s)LET model
– Enable a deterministic communication model

– Allow complex, dynamic temporal behavior

• Extension of the C language:
– Multiple concurrent agents with functional (C code) and non-functional

parts (advance statement)

– Temporal sources and clocks

– Communication means

The PsyC language: a simple example

November 24, 2021
16

• LED-blinking example – specification:

– Period = 10ms

– Duty Cycle (ON) between 0.4 and 0.6

– Switching jitter <= 1ms

Jitter =1 ms

Period = 10 ms

Jitter = 1 ms

Period / 2 = 5 ms

The PsyC language: a simple example

November 24, 2021
17

• LED-blinking example – PsyC code:
source realtime_ms;
clock c_jitter = realtime_ms;
clock c_half_period = 5*realtime_ms;
clock c_period = 2*c_half_period;

agent Blinker
{

body start
{

switch_on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_half_period;

switch_off();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

}
}

The PsyC language: a simple example

November 24, 2021
18

• LED-blinking example – PsyC code:
temporal mode = OK with c_ms;

agent Blinker {
body start {
if ($[0]mode == ERROR)
jump blink;

advance 1 with c_ms;
}
body blink {
switch_on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_half_period;

switch_off();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

}
}

The PsyC language: a simple example

November 24, 2021
19

• LED-blinking example – PsyC code:
temporal mode = OK with c_ms;

agent Blinker {
body start {
if ($[0]mode == ERROR)
jump blink;

advance 1 with c_ms;
}
body blink {
switch_on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_half_period;

switch_off();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

}
}

agent ErrorManager {
body start {
if (/* some condition … */)

mode = ERROR;
advance 1 with c_ms;

}
}

The PsyC semantics: abstract syntax

20
November 24, 2021

• Syntax overview:

𝒅𝒆𝒄𝒍 ∷= 𝒄𝒍𝒌 𝒂𝒈𝒕 … (𝒄𝒐𝒎𝒔)
𝒄𝒍𝒌 ∷= 𝒔𝒐𝒖𝒓𝒄𝒆 𝒄 | 𝒄𝒍𝒐𝒄𝒌 𝒄 = 𝒏𝟏 × 𝒄𝒑 + 𝒏𝟐

𝒂𝒈𝒕 ∷= 𝒂𝒈𝒆𝒏𝒕 𝒊𝒅 𝒃𝒐𝒅𝒚+

𝒃𝒐𝒅𝒚 ∷= 𝒃𝒐𝒅𝒚 𝒊𝒅 𝒔𝒕𝒎𝒕

The PsyC semantics: abstract syntax

21
November 24, 2021

• Syntax overview:

𝒔𝒕𝒎𝒕 ∷= 𝒊𝒅 ≔ 𝒆𝒙𝒑𝒓

| 𝒔𝒕𝒎𝒕𝟏; 𝒔𝒕𝒎𝒕𝟐
| 𝒂𝒅𝒗𝒂𝒏𝒄𝒆 𝒏 𝒘𝒊𝒕𝒉 𝒄

| 𝒊𝒇 𝒆𝒙𝒑𝒓 𝒕𝒉𝒆𝒏 𝒔𝒕𝒎𝒕𝟏𝒆𝒍𝒔𝒆 𝒔𝒕𝒎𝒕𝟐
| …

The PsyC semantics: Esterel translation

November 24, 2021
22

• Esterel translation:

– Synchronous interpretation of PsyC

• Semantics through translation

• Allow to re-use existing tools

– Both PsyC and Esterel are imperative and control-flow

– Main ideas:

• Clock ticks are signals

• Advance are await

• Local variables are Esterel variables

• Temporal variables are valued signals

The PsyC semantics: Esterel translation

November 24, 2021
23

• Esterel Translation: clocks

𝑻 𝒄𝒍𝒐𝒄𝒌 𝒄 = 𝒑 ∗ 𝒄𝒑 + 𝒐 ≝

𝒂𝒘𝒂𝒊𝒕 𝒐;
𝒍𝒐𝒐𝒑
𝒆𝒎𝒊𝒕 𝒄

𝒆𝒂𝒄𝒉 𝒑 𝒄𝒑

The PsyC semantics: Esterel translation

November 24, 2021
24

• Esterel Translation: agent statements

𝑻 𝒊𝒅 ≔ 𝒆𝒙𝒑𝒓 ≝ 𝒊𝒅 ≔ 𝑻 𝒆𝒙𝒑𝒓

𝑻 𝒔𝒕𝒎𝒕𝟏; 𝒔𝒕𝒎𝒕𝟐 ≝ 𝑻 𝒔𝒕𝒎𝒕𝟏 ; 𝑻 𝒔𝒕𝒎𝒕𝟐

𝑻 𝒊𝒇 𝒆𝒙𝒑𝒓 𝒕𝒉𝒆𝒏 𝒔𝟏𝒆𝒍𝒔𝒆 𝒔𝟐 ≝ 𝒊𝒇 𝑻 𝒆𝒙𝒑𝒓 𝒕𝒉𝒆𝒏 𝑻 𝒔𝟏 𝒆𝒍𝒔𝒆 𝑻 𝒔𝟐

𝑻 𝒂𝒅𝒗𝒂𝒏𝒄𝒆 𝒏 𝒘𝒊𝒕𝒉 𝒄 ≝ 𝒂𝒘𝒂𝒊𝒕 𝒏 𝒄; 𝒓𝒖𝒏 𝑼𝒑𝒅𝒂𝒕𝒆𝑶𝒖𝒕𝒑𝒖𝒕𝒔 𝒗𝒂𝒓𝒔…

– UpdateOutputs emit valued signals for each local variable

Toward Formal Verification

November 24, 2021
25

• Global methodology:

➢ Model properties as synchronous observers in Esterel [5]

• Example:

private_mode := OK;
/* error manager start body */
loop
[
if /* some condition */ then
private_mode := ERROR;

await 1 c_ms;
emit mode(private_mode);

]

/* blinker start body */
loop
[
if ?mode = ERROR then

next_body := blink;
exit body;

await 1 c_ms;
]

Toward Formal Verification

November 24, 2021
26

• Global methodology:

➢ Model properties as synchronous observers in Esterel [5]

• Example:

/* blinker blink body */
loop
[
/* switch_on() */
await 1 c_jitter;
await 1 c_half_period;
/* switch_off(); … */
await 1 c_jitter;
await 1 c_period;

]

Toward Formal Verification

November 24, 2021
27

• Global methodology:

➢ Model properties as synchronous observers in Esterel [5]

• Example: minimum duty-cycle (>= 4 ms)

/* blinker blink body */
loop
[
/* switch_on() */
await 1 c_jitter;
abort
await 1 c_half_period;
emit ERROR;

when 4 realtime_ms;
/* switch_off(); … */

]

Conclusion and Perspectives

November 24, 2021
30

• Sum-up:
– Logical Execution Time extends synchrony with logical durations

– Synchronous interpretation of Logical Execution Time with PsyC

• In practice in industry:
– (s)LET languages are usually used as integretion/coordination

language:
• i.e. software integration of synchronous (functional) components

• Perspectives:
– Model more complex properties (e.g. end-to-end latencies)

– Optimize to only represent « noticeable » instants: primary for
efficient verification

References

November 24, 2021
31

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Guernic, and R. Simone, “The Synchronous
Languages 12 Years Later,” Proceedings of the IEEE, vol. 91, pp. 64–83, Feb. 2003, doi:
10.1109/JPROC.2002.805826.

[2] C. M. Kirsch and A. Sokolova, “The Logical Execution Time Paradigm,” in Advances in Real-Time Systems,
S. Chakraborty and J. Eberspächer, Eds. Berlin, Heidelberg: Springer, 2012, pp. 103–120. doi: 10.1007/978-3-
642-24349-3_5.

[3] R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency computation in a multi-periodic design,”
in Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC ’13, Coimbra, Portugal,
2013, p. 1682. doi: 10.1145/2480362.2480678.

[4] C. Aussagues, C. Cordonnier, M. Aji, V. David, and J. Delcoigne, “OASIS: A New Way to Design Safety
Critical Applications,” IFAC Proceedings Volumes, vol. 29, no. 5, pp. 21–26, Nov. 1996, doi: 10.1016/S1474-
6670(17)46349-X.

[5] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous Observers and the Verification of Reactive
Systems,” in Algebraic Methodology and Software Technology (AMAST’93), London, 1994, pp. 83–96. doi:
10.1007/978-1-4471-3227-1_8.

https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1007/978-3-642-24349-3_5
https://doi.org/10.1145/2480362.2480678
https://doi.org/10.1016/S1474-6670(17)46349-X
https://doi.org/10.1007/978-1-4471-3227-1_8

