KRONO-SAFE

Safe design in real-time

towards formal verification

Synchron’21

Fabien’'Siron’<fabien.siron@Kkrono-safe.com>

November 24, 2021

Context and motivation

synchronous Logical Execution Time (sLET)
The PsyC language

Overview of the PsyC semantics

Toward Formal Verification
Conclusion/Perspectives

November 24, 2021

-8 KRONO-SAFE

2

Safety-Critical Real-Time Systems

 Krono-Safe:

— Software provider in the context of safety-critical systems
 Domains: nuclear, avionics...

* Certification issues:

— Predictability & Reproducibility

— Temporal and functional requirements
* Common solution:

— Use high-level deterministic formalisms
— Verify high-level requirements using formal methods

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 3

Motivation: modeling of real-time systems

* Classical example: periodic real-time

"
. jo— -

Scheduling

o —|J!|Jl—|J-L_LAiI—lJ-‘| —|J-‘L—'

zzzzzzzzzzzzzz —£) KRONO-SAFE
design in real-time 4

Motivation: modeling of real-time systems

* The synchronous approach (Esterel, Lustre [1]):
— Model only activation in logical time

Logical View: - - - - - - |

— Traditional real-time interpretation:
* Bind logical clocks to physical clocks (e.g. timer)

e Synchronous cycle computation can use all physical time
until next cycle triggering

msrver: | — i ———

November 24, 2021 —-79 K{RONQ SAFE

5

* Problem: modeling long-period tasks
— Invisible in the synchronous model

1 1 . —]

— Consider than the duration of task 2 is longer than
the duration between successive cycle triggers:

v | — i — o —

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 6

* Problem: modeling long-period tasks
— Possible synchronous solution: retiming/slicing

TaskO =& 1 1 1 1 1 1 1 1 i
Logical View: BN GBI SIS GEEEEE B DI SEE B SEE G SR
- i - { - | | 1 |]
Task1' § 1 1 1 1 1 1 i ’ 1
— BUT: static and manual slicing is difficult and non-
portable

syl fes _L!'l“!'lJ!'L'!'Id!'I‘!'lJ!'Ii!'IJ-'L'-_'

November 24, 2021

%) KRONO- SAFE

7

Motivation: modeling of real-time systems

* Logical Execution Time [2]: extension of synchrony
— Specify the logical time cycle a task may span

e —

N TN TN N m-

TaskO

Logical View:
Task1

— Classical synchronous composition is lost, but

— Real-time interpretation is more general
» Contract separating application design and platform resource

v —| S — - —

November 24, 2021 _@ KRONO ~-SAFE
e design in real-time 8

The synchronous LET paradigm

* A synchronous extension of LET: PsyC [4]

— Given a statement advance which fixes the bounds of a logical
interval:

advance 5 with min:

] + advance 65 with min
advance 1 with hour

— Contrary to classical LET, time is not cumulative
— Bounds are relative to the ticks of some logical clocks

November 25, 2021 _@ KRONO-SAFE
Safe design in real-time 9

* A typical verification problem: end-to-end latencies [3]

Inputs

—LLI—IAaLLLLM»

Schedulin

zzzzzzzzzzzzzz —£) KRONO-SAFE
design in real-time 13

The PsyC language: concepts

* Primary temporal Sources
— generating global rhythms
— most often, only one linked to real time

* Periodic Clocks
— subdivising source ticks

* Program reactions
— may span a fixed interval: sLET interval durations

 Temporal variables
— share values between agents
— persistent values and values updated on sLET interval bounds

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 14

The PsyC language

 Produced by Krono-Safe, dedicated to the safety-critical real-time
software integration.

— Based on a technology developed by the CEA (Oasis and PharOS projets)

* Implement the (s)LET model
— Enable a deterministic communication model
— Allow complex, dynamic temporal behavior

* Extension of the C language:

— Multiple concurrent agents with functional (C code) and non-functional
parts (advance statement)

— Temporal sources and clocks
— Communication means

November 24, 2021 ‘v‘Z’) KRONO-SAFE
Safe design in real-time 15

The PsyC language: a simple example

* LED-blinking example — specification:
— Period = 10ms
— Duty Cycle (ON) between 0.4 and 0.6
— Switching jitter <= 1ms

switch_on() switch_off()
| - | | I'I |"
——)

Jitter =1 ms Jitter =1 ms

Period = 10 ms

Period /2 =5 ms

November 24, 2021 .%D KRONO-SAFE
S design in real-time 16

The PsyC language: a simple example

* LED-blinking example — PsyC code:

source realtime_ms;

clock c_jitter = realtime_ms;

clock c_half_period = 5*realtime_ms;
clock c_period = 2*c_half period;

agent Blinker

body start
{
switch on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_half_period;

switch off();

advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

}
}
switch_on() switch_off()
| - | | .-I |—>
November 24, 2021 _@ KRONO SAFE

17

The PsyC language: a simple example

* LED-blinking example — PsyC code:
temporal mode = OK with c_ms;

agent Blinker {
body start {
if ($[0]mode == ERROR)
jump blink;
advance 1 with c_ms;

}
body blink {
switch _on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c_half period;

switch off();

advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

November 24, 2021 .%D KRONO-SAFE
Safe design in real-time 18

The PsyC language: a simple example

* LED-blinking example — PsyC code:

temporal mode = OK with c_ms;

agent Blinker {
body start {
if ($[0]mode == ERROR)
jump blink;
advance 1 with c_ms;

}
body blink {
switch _on();
advance 1 with c_jitter;
/* do nothing */
advance 1 with c¢_half period;

switch off();

advance 1 with c_jitter;
/* do nothing */
advance 1 with c_period;

November 24, 2021

agent ErrorManager {
body start {

if (/* some condition ..

mode = ERROR;
advance 1 with c_ms;

}
}

“/)

-@ KROND-SAFE

19

The PsyC semantics: abstract syntax

* Syntax overview:

decl = clk | agt| ... (coms)

clk = sourcec| clockc=n4 Xc, +n;
agt = agent id body*
body ::= body id stmt

November 24, 2021 ——79 Knom EATE
Safe design in real-time 20

The PsyC semantics: abstract syntax

* Syntax overview:

stmt id = expr
Stmtlj Stmtz
advance n with c

if expr then stmt else stmt,

November 24, 2021 ——79 Knom EATE
Safe design in real-time 21

The PsyC semantics: Esterel translation

e Esterel translation:

— Synchronous interpretation of PsyC
e Semantics through translation
* Allow to re-use existing tools

— Both PsyC and Esterel are imperative and control-flow

— Main ideas:
* Clock ticks are signals
* Advance are await
* Local variables are Esterel variables
* Temporal variables are valued signals

November 24, 2021 .%D KRONO-SAFE
Safe design in real-time 22

The PsyC semantics: Esterel translation

e Esterel Translation: clocks

awalit o;

loop
emilit c

eachp c,

T(clockc=p *c, +0) &

November 24, 2021 —-79 KRom SAFE
=T | ",’.’SI5I|‘”Y>_'¢| time 23

The PsyC semantics: Esterel translation

* Esterel Translation: agent statements
T(id = expr) € id = T(expr)
T(stmty; stmt,) & T(stmty); T(stmt,)
T(if expr then sqelse s;) £ if T(expr)then T(s)else T(s,)
T(advance n with c) £ await n c;run UpdateOQutputs(vars ...)

— UpdateOutputs emit valued signals for each local variable

November 24, 2021 __57) KRONO SAFE
e 24

Toward Formal Verification

* Global methodology:

» Model properties as synchronous observers in Esterel [5]
e Example:

private_mode := 0K;
/* blinker start body */ /* error manager start body */
loop loop
[[

it ?mode = ERROR then if /* some condition */ then
next_body := blink; private mode := ERROR;
exit body; awalit 1 c_ms;

await 1 c_ms; emit mode(private mode);

]]

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 25

Toward Formal Verification

* Global methodology:

» Model properties as synchronous observers in Esterel [5]
e Example:

/* blinker blink body */

loop

[
/* switch on() */
await 1 c_jitter;
await 1 c_half period;
/* switch off(); .. */
await 1 c_jitter;
await 1 c_period;

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 26

Toward Formal Verification

* Global methodology:

» Model properties as synchronous observers in Esterel [5]
 Example: minimum duty-cycle (>= 4 ms)

/* blinker blink body */
loop

[
/* switch on() */
await 1 c_jitter;
abort
await 1 c_half period;
emit ERROR;
when 4 realtime_ms;

/* switch off(); .. */

November 24, 2021

-§) KRONO-SAFE

27

Conclusion and Perspectives

* Sum-up:
— Logical Execution Time extends synchrony with logical durations
— Synchronous interpretation of Logical Execution Time with PsyC

* In practice in industry:

— (s)LET languages are usually used as integretion/coordination
language:
* i.e. software integration of synchronous (functional) components
* Perspectives:
— Model more complex properties (e.g. end-to-end latencies)

— Optimize to only represent « noticeable » instants: primary for
efficient verification

November 24, 2021 _@ KRONO-SAFE
Safe design in real-time 30

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Guernic, and R. Simone, “The Synchronous
Languages 12 Years Later,” Proceedings of the IEEE, vol. 91, pp. 64—-83, Feb. 2003, doi:
10.1109/JPROC.2002.805826.

[2] C. M. Kirsch and A. Sokolova, “The Logical Execution Time Paradigm,” in Advances in Real-Time Systems,
S. Chakraborty and J. Eberspacher, Eds. Berlin, Heidelberg: Springer, 2012, pp. 103-120. doi: 10.1007/978-3-
642-24349-3 5.

[3] R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency computation in a multi-periodic design,”
in Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC 13, Coimbra, Portugal,
2013, p. 1682. doi: 10.1145/2480362.2480678.

[4] C. Aussagues, C. Cordonnier, M. Aji, V. David, and J. Delcoigne, “OASIS: A New Way to Design Safety
Critical Applications,” IFAC Proceedings Volumes, vol. 29, no. 5, pp. 21-26, Nov. 1996, doi: 10.1016/51474-
6670(17)46349-X.

[5] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous Observers and the Verification of Reactive
Systems,” in Algebraic Methodology and Software Technology (AMAST’93), London, 1994, pp. 83-96. doi:
10.1007/978-1-4471-3227-1 8.

November 24, 2021 _@ KRONO SAFE
e 31

https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1007/978-3-642-24349-3_5
https://doi.org/10.1145/2480362.2480678
https://doi.org/10.1016/S1474-6670(17)46349-X
https://doi.org/10.1007/978-1-4471-3227-1_8

