
Extracting
Mode Diagrams
from
Blech Code

Daniel Lucas, Alexander Schulz-Rosengarten, Reinhard von Hanxleden
Kiel University, Germany

Friedrich Gretz, Franz-Josef Grosch
Robert Bosch GmbH, Corporate Research, Renningen, Germany

SYNCHRON 2021, La Rochette, France
Originally FDL’21, Antibes, France, Sep. 8–10

a b
condition

await condition

2

3

What this talk is about …

New language/model of computation

Softwaresynthesis

Semantics

Documentation
4

(✓)
✓

motor.sctx

1 /**
2 Controller for stepper motor
3 */
4 scchart MOTOR {
5 output int currentUsec = 0
6 output int wakeUsec
7 input bool accel, decel
8 input bool stop
9 output bool motor = false

10 output float v
11 output int pMotorUsec
12 int pSetSpeedsMinUsec = 500000
13 int pSetSpeedsMaxUsec = 500000
14 output int pUsec
15 output int pMinUsec = pSetSpeedsMaxUsec
16 float dV = 2
17 float vMax = 20
18 float cmPerHalfPeriod = 1
19
20 /** Process user inputs, set the speed/motor period */
21 region SetSpeeds:
22
23 initial state SetSpeeds "" {
24 bool clk
25
26 region ProcessInputs:
27
28 initial state Init
29 immediate go to Running
30
31 state Running {
32 entry do v = 0
33
34 region CalcV:
35
36 initial state Pause
37 if clk & accel & !decel go to Accel
38 if clk & decel & !accel go to Decel
39
40 state Accel
41 immediate do v += dV go to CheckMax
42
43 state Decel
44 immediate do v -= dV go to CheckMin
45
46 state CheckMax
47 immediate if v <= vMax go to SetPeriod
48 immediate do v = vMax go to SetPeriod
49
50 state CheckMin
51 immediate if v >= -vMax go to SetPeriod
52 immediate do v = -vMax go to SetPeriod
53
54 state SetPeriod
55 immediate if v == 0 do pMotorUsec = 0 go to Pause
56 immediate do pMotorUsec = 1000000 * cmPerHalfPeriod / v go to Pause
57 }
58 if clk & stop do pMotorUsec = 1000 abort to Running
59
60 region GenClk:
61
62 initial state GenClkState {
63 int myWakeMinUsec, myWakeMaxUsec
64
65 initial state Init
66 immediate do clk = true;
67 myWakeMinUsec = currentUsec + pSetSpeedsMinUsec;
68 myWakeMaxUsec = currentUsec + pSetSpeedsMaxUsec
69 go to AssertWakeTime
70
71 connector state AssertWakeTime
72 immediate do wakeUsec = myWakeMaxUsec go to Pause
73
74 @layout[layerConstraint] LAST
75 state Pause
76 if currentUsec < myWakeMinUsec do clk = false go to AssertWakeTime
77 go to Init
78 }
79 }
80
81 region CtrlMotor:
82
83 initial state CtrlMotor "" {
84 bool clk
85
86 region GenClk:
87
88 initial state GenClkState "" {
89 int myWakeUsec
90
91 initial state Stopped
92 immediate if pMotorUsec > 0
93 do myWakeUsec = currentUsec + pMotorUsec;
94 clk = true go to AssertWakeTime
95
96 connector state AssertWakeTime
97 immediate do wakeUsec min= myWakeUsec go to Running
98
99 @layout[layerConstraint] LAST

100 state Running
101 do clk = false go to ResetClock
102
103 connector state ResetClock
104 immediate if pMotorUsec > 0 & currentUsec < myWakeUsec
105 go to AssertWakeTime
106 immediate go to Stopped
107 }
108
109 region Motor:
110
111 initial state Low
112 if clk do motor = true go to High
113
114 state High
115 if clk do motor = false go to Low
116 }
117
118 region SimTime:
119
120 initial state SimTimeState "" {
121 during do pUsec = currentUsec;
122 currentUsec = pre(wakeUsec);
123 pUsec = wakeUsec - pre(wakeUsec);
124 pMinUsec min= pUsec
125 /* during do pUsec = currentUsec;
126 currentUsec = pre(wakeUsec);
127 pUsec = currentUsec - pUsec;
128 pMinUsec min= pUsec */
129 }
130 }

Page 1

Motivation

5

vs.

Key for understanding:
Abstraction

Goal

Facilitate understanding of state-oriented software
1. What are the states?
2. When do we change state?
3. What hierarchy is there?
4. What concurrency is there?
5. …

Illustrate/validate this with Blech language
However, the general approach should be applicable to other
languages as well!

6

Related Work
• Gracanin et al.

Software Visualization
Innovations in Systems and Software Engineering
2005

• Fuhrmann, von Hanxleden
Taming Graphical Modeling
MODELS‘10

• Sen, Mal
Extracting finite state representation of Java programs
Software & Systems Modeling 2016

• Smyth et al.
Model extraction for legacy C programs with SCCharts
ISoLa‘16

• Prochnow et al.
Synthesizing Safe State Machines from Esterel
LCTES’06

7

Example

8

1. What are the states?
2. When do we change state?
3. What hierarchy is there?

StopWatchController

init

Measurement
+

stop

startStop
startStop

startStop or resetLap
1: resetLap

2:

-

Example

9

1. What are the states?
2. When do we change state?
3. What hierarchy is there?

Extracting Mode Diagrams from Blech Code
Daniel Lucas⇤, Alexander Schulz-Rosengarten†,

Reinhard von Hanxleden†
Department of Computer Science, Kiel University

Kiel, Germany
⇤stu124145@mail.uni-kiel.de

†{als, rvh}@informatik.uni-kiel.de

Friedrich Gretz, Franz-Josef Grosch
Robert Bosch GmbH, Corporate Research

Renningen, Germany
{Friedrich.Gretz, Franz-Josef.Grosch}@de.bosch.com

Abstract—Software visualization tools can improve the soft-

ware development process by providing a graphical overview of

source code and enhancing collaboration. We here propose a con-

cept to automatically extract mode diagrams from Blech code, an

imperative synchronous programming language for embedded,

reactive and safety-critical systems. Our main findings are that

the visualization is helpful to understand the stateful nature of

the source code and that it can enhance the collaboration between

developers. It is also found, however, that a good understanding of

the precise diagram semantics meaning of the diagram elements

is key. Lastly, the findings indicate that preference on different

labeling options is highly subjective.

Index Terms—synchronous languages, state machines, mode

diagrams, software visualization, reactive systems

I. INTRODUCTION

Software development is more than the process of writing
source code. It begins by recording the requirements for the
desired software and continues with planning of the software
architecture, its components, and its environment. Only then,
actual source code is written. The process then includes
the generation of documentation. It can be generated with
visualization tools and languages such as UML. Creating such
models can be a tedious task that takes a lot of effort and time.
The purpose of documentation is to offer an overview of the
software (components) and providing a help for understanding
the code base in different abstraction levels. Documentation
is beneficial to use for experienced developers as well as
developers that just started out working on a given project.

Code, however, is not static. Code improvements, refactor-
ing, new features, customer requests or updated technology
are all reasons to change existing code. Therefore, automatic
generation of up-to-date code documentation could enhance
the software development process.

In this paper, we investigate how to harness software
visualization [6] for the Blech programming language [7].
Blech is an imperative synchronous programming language
for embedded, reactive, real-time, safety-critical systems. It is
a synchronous language [2], and is inspired by languages like
Esterel [3], Céu [12] or Sequentially Constructive Statecharts
(SCCharts) [16] that are used to implement stateful behavior.
To illustrate that stateful nature, consider the StopWatchCon-
troller example in Fig. 1. In the initial tick we perform some
initializations and then pause at the await statement in line 10,
which we can consider as the initial state of the program. We

1 activity StopWatchController
2 (startStop: bool, resetLap: bool) // Read−only inputs
3 (display: Display) // Read−write outputs
4 var totalTime: int32
5 var lastLap: int32
6 repeat
7 totalTime = 0
8 lastLap = 0
9 writeTicksToDisplay(totalTime)(display)

10 await startStop // State init
11 repeat
12 cobegin weak
13 await startStop
14 with weak
15 run Measurement(resetLap)(totalTime, lastLap, display)
16 end
17 writeTicksToDisplay(totalTime)(display)
18 await startStop or resetLap // State stop
19 // Run again if only startStop was pressed
20 until resetLap end // Back to init if resetLap was pressed
21 end
22 end

(a) Original Blech code.

(b) The corresponding mode diagram, automatically extracted with
the approach presented here.

Fig. 1: The StopWatchController example.

remain in that state until, in some future reaction, the Boolean
flag startStop is true and we enter a repeat loop. In that
loop, the program concurrently does two things (over several
reaction steps): it waits for another occurrence of startStop,
while also executing the Measurement sub-activity. After that,
we wait for the startStop or resetLap flags; if the latter occurs,
we loop back to the initial state.

While the underlying state machine is explicitly laid down in
the program, extracting it requires some fairly careful reading
of the source code. In real life, the code quickly becomes
more complex than this simple example and keeping track
of the stateful behavior may become a challenging task. This
is where software visualization and the work presented here
come into play.978-1-6654-1825-6/21/$31.00 ©2021 IEEE

StopWatchController

init

Measurement
+

stop

startStop
startStop

startStop or resetLap
1: resetLap

2:

-

Extraction Process

Phase 1: Structural Translation
From Blech to Mode Diagrams

Phase 2: Label Extraction
State naming

Phase 3: Optimization
Hierarchy Flattening
Transient State Elimination

10

Phase 1: Structural Translation

11

activity act (inp: int32) (out: bool)
//...

end

act
input int inp
output bool out

a b

-

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out)

Fig. 3: Blech run statement and synthesized SCChart.

await condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.
1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

activity act (inp: int32) (out: bool)
//...

end

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out) a
act

input int inp
output int out

-

b

Fig. 3: Blech run statement and synthesized SCChart.

await condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.
1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

Phase 1: Structural Translation

12

activity act (inp: int32) (out: bool)
//...

end

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out)

Fig. 3: Blech run statement and synthesized SCChart.

await condition a b
condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.
1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

cobegin weak
// ..

with
// ..

end

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

b
-

c
-

d

1: condition

2:

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

activity act (inp: int32) (out: bool)
//...

end

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out)

Fig. 3: Blech run statement and synthesized SCChart.

await condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.
1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

b
-

c

1: condition

2:

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

Phase 1: Structural Translation

13

activity act (inp: int32) (out: bool)
//...

end

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out)

Fig. 3: Blech run statement and synthesized SCChart.

await condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.
1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end
a

b
-

c

2:

1: condition

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

Phase 1: Structural Translation

14

cobegin weak
// ..

with
// ..

end

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

a

b
-

c

1: condition

2:

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

Phase 1: Structural Translation

15

cobegin weak
// ..

with
// ..

end

a

-

-
b

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

Running Example – After Phase 1

16

States are not named ⇒ Phase 2, Label Extraction
Bloated structure ⇒ Phase 3, Optimization

cobegin weak
// ..

with
// ..

end

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in2

-

in3

-

-

1: 42 < in1

2:

-

-

Phase 2: Label Extraction

17

@@[label=”aLabel”]
await condition

aLabel
condition

Fig. 12: Blech await statement with label specification and
synthesized SCChart.

We propose to use Blech pragmas for the specification
of labels. Pragmas are distinguished by a double @ prefix.
Essentially, they act like comments with a special meaning
in the source code. We adopt a @@[keyword=”text”] syntax
wherein various keywords denote the various labeling options
as explained in the following.

We discuss two approaches to labeling the code locations:
a state-only and an extended approach.

A. State-only labeling

The await statement is the primary source of states and
transitions in our diagrams. Often, the code before the await
implements one mode of operation and the code after the await
implements the next mode. For instance, in our introductory
example code in Fig. 1a, the code before line 10 is concerned
with the initialization, while the code after line 10 starts a
measurement. Here we would like to give a meaningful name,
such as init, to the state the program is in while waiting for
a certain condition. In Fig. 1a a simple comment is used
to describe this location. To reflect this in the diagram, we
propose a @@[label=”text”] pragma which is placed before an
await statement to label the state that the awaiting transition
emanates from, as illustrated in Fig. 12.

B. Extended labeling approach

The extended approach allows for a more fine grained
labeling of the elements. As we will see later, after some
simplification steps, the only hierarchies that remain in the
SCChart are due to activity calls or cobegin constructs. Since
activity calls already have a label given by the activity they are
referencing, no extra label is needed. Hence we consider the
visual elements representing a cobegin construct. The elements
to be labeled are different regions, each representing a cobegin
branch, and the complex node containing these regions. For
our extended labeling approach, we add the cobegin and branch
pragma keywords.

As shown in Fig. 13, the labels are assigned using @@
[cobegin=”text”] for the complex node and @@[branch=”text
”] for a branch. All labels specified in the Blech code for
the visualization must be placed before the cobegin construct.
Consequently, a branch label is needed for each branch, when
labeling the different regions, in order to make the labeling
unambiguous.

IV. PHASE 3: TRANSIENT STATE ELIMINATION &
HIERARCHY FLATTENING

The translation above produces rather bloated diagrams as
can be seen in our running example in Fig. 11b. For instance,
the if and repeat statements induce unnecessary hierarchies,

@@[cobegin=”calculation label”]
@@[branch= ”calculation A”]
@@[branch= ”calculation B”]
cobegin

// ...
with

// ...
end

Fig. 13: Region labeling with the advanced labeling approach.

(a) Before flattening.

(b) After flattening.

Fig. 14: An example of how hierarchy is flattened for the
when-abort construct.

which only obscure the stateful nature of the code. Further-
more, some of the generated states turn out to be superfluous,
too. In our example, in every super-state there is a final state
that is entered and left immediately. Such transient states do
not convey any information and will be removed as well.

Thus after generating a diagram in Phases 1 and 2, we
propose to simplify the result in Phase 3, which is divided
into two steps. Step 1 flattens hierarchy levels, as discussed
in Sec. IV-A. In Step 2 we collapse superfluous immediate
transitions, as covered in Sec. IV-B. Step 2 follows after
Step 1 because hierarchy flattening may produce additional
immediate transitions that can be collapsed as well.

A. Hierarchy Flattening
Most translation rules in Sec. II introduce complex states

with inner behavior. Those states add hierarchy to the mode
diagram, which may or may not be desired by the modeler.

1) Aborts: Fig. 14a shows the mode diagram produced by
Phase 1 for the following snippet of code.

when abrtCond abort
await awtCond

end

The hierarchical structure of the code is reflected in the
hierarchical construction of the diagram. Note that the only
state with a delayed outgoing transition is state b. Thus the
only way that the super-state comprising b, c and d can be
aborted is if it is waiting in b and abrtCond becomes true.
This insight is explicitly shown in Fig. 14b. The hierarchy is
removed (or, as we say here, flattened), all states are preserved,
only their final or initial status is changed to a regular status,
and the aborting transition directly links states b and e.

In this example, one may argue that removing the hierarchy
has simplified the diagram. However, we have also lost some
of the structure of the original Blech code. Furthermore, if

@@[label=”aLabel”]
await condition

Fig. 12: Blech await statement with label specification and
synthesized SCChart.

We propose to use Blech pragmas for the specification
of labels. Pragmas are distinguished by a double @ prefix.
Essentially, they act like comments with a special meaning
in the source code. We adopt a @@[keyword=”text”] syntax
wherein various keywords denote the various labeling options
as explained in the following.

We discuss two approaches to labeling the code locations:
a state-only and an extended approach.

A. State-only labeling

The await statement is the primary source of states and
transitions in our diagrams. Often, the code before the await
implements one mode of operation and the code after the await
implements the next mode. For instance, in our introductory
example code in Fig. 1a, the code before line 10 is concerned
with the initialization, while the code after line 10 starts a
measurement. Here we would like to give a meaningful name,
such as init, to the state the program is in while waiting for
a certain condition. In Fig. 1a a simple comment is used
to describe this location. To reflect this in the diagram, we
propose a @@[label=”text”] pragma which is placed before an
await statement to label the state that the awaiting transition
emanates from, as illustrated in Fig. 12.

B. Extended labeling approach

The extended approach allows for a more fine grained
labeling of the elements. As we will see later, after some
simplification steps, the only hierarchies that remain in the
SCChart are due to activity calls or cobegin constructs. Since
activity calls already have a label given by the activity they are
referencing, no extra label is needed. Hence we consider the
visual elements representing a cobegin construct. The elements
to be labeled are different regions, each representing a cobegin
branch, and the complex node containing these regions. For
our extended labeling approach, we add the cobegin and branch
pragma keywords.

As shown in Fig. 13, the labels are assigned using @@
[cobegin=”text”] for the complex node and @@[branch=”text
”] for a branch. All labels specified in the Blech code for
the visualization must be placed before the cobegin construct.
Consequently, a branch label is needed for each branch, when
labeling the different regions, in order to make the labeling
unambiguous.

IV. PHASE 3: TRANSIENT STATE ELIMINATION &
HIERARCHY FLATTENING

The translation above produces rather bloated diagrams as
can be seen in our running example in Fig. 11b. For instance,
the if and repeat statements induce unnecessary hierarchies,

@@[cobegin=”calculation label”]
@@[branch= ”calculation A”]
@@[branch= ”calculation B”]
cobegin

// ...
with

// ...
end

calculation label

a c

- calculation A

a c

- calculation B

Fig. 13: Region labeling with the advanced labeling approach.

(a) Before flattening.

(b) After flattening.

Fig. 14: An example of how hierarchy is flattened for the
when-abort construct.

which only obscure the stateful nature of the code. Further-
more, some of the generated states turn out to be superfluous,
too. In our example, in every super-state there is a final state
that is entered and left immediately. Such transient states do
not convey any information and will be removed as well.

Thus after generating a diagram in Phases 1 and 2, we
propose to simplify the result in Phase 3, which is divided
into two steps. Step 1 flattens hierarchy levels, as discussed
in Sec. IV-A. In Step 2 we collapse superfluous immediate
transitions, as covered in Sec. IV-B. Step 2 follows after
Step 1 because hierarchy flattening may produce additional
immediate transitions that can be collapsed as well.

A. Hierarchy Flattening
Most translation rules in Sec. II introduce complex states

with inner behavior. Those states add hierarchy to the mode
diagram, which may or may not be desired by the modeler.

1) Aborts: Fig. 14a shows the mode diagram produced by
Phase 1 for the following snippet of code.

when abrtCond abort
await awtCond

end

The hierarchical structure of the code is reflected in the
hierarchical construction of the diagram. Note that the only
state with a delayed outgoing transition is state b. Thus the
only way that the super-state comprising b, c and d can be
aborted is if it is waiting in b and abrtCond becomes true.
This insight is explicitly shown in Fig. 14b. The hierarchy is
removed (or, as we say here, flattened), all states are preserved,
only their final or initial status is changed to a regular status,
and the aborting transition directly links states b and e.

In this example, one may argue that removing the hierarchy
has simplified the diagram. However, we have also lost some
of the structure of the original Blech code. Furthermore, if

Phase 3: Hierarchy Flattening

19

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1 in2

2:

-

⇒

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in2

-

in3

-

-

1: 42 < in1

2:

-

-

Phase 3: Transient State Elimination

20

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1 in2

2:

-

⇒
runningEx

input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1

in2

2:

-

Phase 3: Transient State Elimination

21

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1

in2

2:

-

cobegin weak
// ..

with
// ..

end

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

22

23

/// In the locked mode, keep blinking until the user presses button 1
activity Locked (pressedOne: bool)

(ledLeft: bool, ledMiddle: bool, ledRight: bool)
when pressedOne abort // Button 1: start unlocking

run Blink()(ledLeft, ledMiddle, ledRight)
end

end

/// Lock has been successfully opened
/// Determine exclusively pressed button
activity Success (pressedOne: bool, pressedTwo: bool)

(ledLeft: bool, ledMiddle: bool, ledRight: bool)
returns bool

successToLEDs()(ledLeft, ledMiddle, ledRight)

await pressedOne and not pressedTwo
or pressedTwo and not pressedOne //exactly one button is pressed

if pressedTwo then
return true // indicate that we want to reprogram the secret

else
return false // Button 1 leads back to start

end
end

/**
* Program starts here
***/
@[EntryPoint]
activity XDKBonus (x: int32, y: int32, z: int32, pressedOne: bool, pressedTwo: bool, mlux

(ledLeft: bool, ledMiddle: bool, ledRight: bool)
var secret: [MAXLEN]nat32 = { EXACT * NORTH, EXACT * EAST, EXACT * WEST, EXACT * SOUTH,

UNDEFPOS, UNDEFPOS, UNDEFPOS, UNDEFPOS }
repeat

// abort when the device is put face down on the table
when faceDownOnTheTable(z, mlux) abort

// I.
run Locked(pressedOne)(ledLeft, ledMiddle, ledRight)

// II.
var successful = false
run successful = Unlock(secret, x, y, pressedOne)(ledLeft, ledMiddle, ledRight)
if successful then

// III.
var wantReprogramming = false
run wantReprogramming = Success(pressedOne, pressedTwo)(ledLeft, ledMiddle

ledRight)
if wantReprogramming then

// IV.
run _ = Programming(x, y, pressedOne, pressedTwo)(secret, ledLeft, ledMiddle

ledRight)
end

end

/// This is the reference implementation for the "XDK Virtual Lock"
/// initially written for the BoCSE 2019 tutorial.
///
/// See accompanyning lecture notes for the specification.
///
/// (c) Robert Bosch GmbH, 2019

/**

* Global constants

**********/
const OneG: int32 = 4095 // acceleration value from sensor which we

// consider to be at least 1g (gravitation force)
const PositionEpsilon: int32 = 400 // 10% epsilon
const Cos45xG: int32 = 2895 // cos(45°) * OneG = sin(45°) * OneG

/// We encode pose information by a prime number encoding
/// For example: we represent the XDK standing upright (12 o'clock) as
/// NORTH * EXACT = 2 * 11 = 22
const UNDEFPOS: nat32 = 1

const NORTH: nat32 = 2
const EAST: nat32 = 3
const SOUTH: nat32 = 5
const WEST: nat32 = 7

const EXACT: nat32 = 11
const RIGHTOF: nat32 = 13
const LEFTOF: nat32 = 17

/// The maximum length of the secret
const MAXLEN: nat32 = 8

/**

* Helpers

**********/
/// invert LEDs' status values
function invertLEDs () (ledLeft: bool, ledMiddle: bool, ledRight: bool)

ledRight = not ledMiddle
ledLeft = not ledMiddle
ledMiddle = not ledMiddle

end

/// indicate succesfully entered secret
function successToLEDs () (ledLeft: bool, ledMiddle: bool, ledRight: bool)

ledRight = true
ledLeft = true
ledMiddle = true

end

/// true if the device is put face down on the table

/// value is +- PositionEpsilon around point
function around (v: int32, p: int32) returns bool

// abs(p-v) <= epsilon
if v <= p then

return p-v <= PositionEpsilon
else

return v-p <= PositionEpsilon
end

end

/**
XddX

WKkxclK
XWXkxx0NOdK

NKOkxxkXW OdK
WKxdkKW OdK

XOxxON OdK
N0xxkXW OdK

WKkdxKW OdK
WXOxdON OdK

N0xdkXW OdK
NWXkxk0N OdK

HYPOTENUSE odxxxOX OdK
WNXOddxKW OdK

WNKkxx0N OdK
NOxddON OdK

WKkdkKNW OdK
WXOxx0N OdK

N0xxOXW OdK
WKkxkKW OdK

XOxxON OdK
N0xxkXW OdK

WKkdx0W OPPOSITE clK
NOxdON ooK

W0xdkKW OdK
WKkxx0N OdK

NOxxkKW OdK
N0klcOX angle alpha OdK

WXkdx0X OdK
NOolx0XNX0xOK0KXNNNNNNNNXXNNXXXNNXNXNXXXXXXXXNXXNNNXXXXNNNNNNNNNNNNNNNNNXXXNxoK
O::dxxxxxdodxxokN

ADJACENT
*/
function isExact (nearG: int32, nearZero: int32) returns bool

return nearG >= OneG - PositionEpsilon
and around(nearZero, 0)

end

function isRightOf (opposite: int32, adjacent: int32) returns bool
return OneG > opposite

and opposite > Cos45xG
and PositionEpsilon < adjacent
and adjacent < Cos45xG

end

function isLeftOf (opposite: int32, adjacent: int32) returns bool
return isRightOf(opposite, -adjacent)

end

/// Determine proximity of given vector to South direction
function isSouthAligned (x: int32, y: int32) returns nat32

if isExact(x, y) then
return EXACT

elseif isRightOf(x, y) then
return RIGHTOF

elseif isLeftOf(x, y) then
return LEFTOF

else
return UNDEFPOS

end
end

/// point symmetric to isSouthAligned
function isNorthAligned (x: int32, y: int32) returns nat32

return isSouthAligned(-x, -y)
end

/// map to isSouthAligned by rotation
function isEastAligned (x: int32, y: int32) returns nat32

return isSouthAligned(-y, x)
end

/// point symmetric to isEastAligned
function isWestAligned (x: int32, y: int32) returns nat32

return isEastAligned(-x, -y)
end

/// Determines the XDK's pose given the x and y values of the
accelerometer
function determineOrientation (x: int32, y: int32) returns nat32

// check every direction and take the first that gives a defined
alignment

var alignment = isNorthAligned(x, y)
if UNDEFPOS != alignment then return alignment * NORTH end
alignment = isEastAligned(x, y)
if UNDEFPOS != alignment then return alignment * EAST end
alignment = isSouthAligned(x, y)
if UNDEFPOS != alignment then return alignment * SOUTH end
alignment = isWestAligned(x, y)
if UNDEFPOS != alignment then return alignment * WEST end
return UNDEFPOS

end

/// Given a pose sets LED to reflect the alignment
function poseToLED (pose: nat32) (ledLeft: bool, ledMiddle: bool,
ledRight: bool)

ledMiddle = false
ledRight = false
ledLeft = false
if pose % EXACT == 0 then

ledMiddle = true
elseif pose % RIGHTOF == 0 then

/// Given a pose, tells if it is exactly aligned
function poseIsExact (pose: nat32) returns bool

return pose % EXACT == 0
end

/**
* Misc helper activities
***/

/// In every tick: given accelerometer sensor readings
/// sets LED to reflect the pose
activity DisplayOrientation (x: int32, y: int32)

(ledLeft: bool, ledMiddle: bool, ledRight: bool, pose: nat32)
repeat

pose = determineOrientation(x, y)
poseToLED(pose)(ledLeft, ledMiddle, ledRight)
await true

end
end

/// When called, delays execution for a given number of ticks
activity CountDown (ticks: nat32)

var steps = ticks
repeat

await true
steps = steps - 1

until steps <= 0 end
end

/// Invert the status of all LEDs every half a second
activity Blink () (ledLeft: bool, ledMiddle: bool, ledRight: bool)

repeat
invertLEDs()(ledLeft, ledMiddle, ledRight)
run CountDown(5) // do nothing for 5 ticks = 0.5s

end
end

/**
* Activities (representing modes)
***/

activity EnterSecret (secret: [MAXLEN]nat32, pose: nat32, pressedOne: bool) returns bool
var idx: nat32 = 0
var ok = true
repeat

await pressedOne
if poseIsExact(pose) then

if pose == secret[idx] then
idx = idx + 1
if idx < MAXLEN and secret[idx] == UNDEFPOS then // guard array access

idx = MAXLEN // skip the rest
end

else
ok = false

end

/// Contains the process of unlocking the virtual lock
/// Returns true iff lock has been opened successfully
activity Unlock (secret: [MAXLEN]nat32, x: int32, y: int32, pressedOne:
bool)

(ledLeft: bool, ledMiddle: bool, ledRight: bool)
returns bool

var pose: nat32
var ok = false
cobegin weak

run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)
with

run ok = EnterSecret(secret, pose, pressedOne)
end
return ok

end

activity EnterNewSecret (pose: nat32, pressedOne: bool, pressedTwo:
bool)

(newSecret: [MAXLEN]nat32) returns bool
var idx: nat32 = 0
cobegin weak

repeat
await pressedOne and not pressedTwo
if poseIsExact(pose) then

newSecret[idx] = pose
idx = idx + 1

end
// else inexact position, do not evaluate

until idx == MAXLEN end
with weak

await pressedTwo and not pressedOne // finish programming
end
return idx > 0 // at least one position has been entered

end

/// The process of setting a new secret in the virtual lock
activity Programming (x: int32, y: int32, pressedOne: bool, pressedTwo:
bool)

(secret: [MAXLEN]nat32, ledLeft: bool, ledMiddle: bool,
ledRight: bool)

returns bool
var pose: nat32
var newSecret: [MAXLEN]nat32 = { UNDEFPOS, UNDEFPOS, UNDEFPOS,

UNDEFPOS,
UNDEFPOS, UNDEFPOS, UNDEFPOS, UNDEFPOS }

var ok = false

cobegin weak
run DisplayOrientation(x, y)(ledLeft, ledMiddle, ledRight, pose)

with
run ok = EnterNewSecret(pose, pressedOne,

pressedTwo)(newSecret)
end
if ok then

secret = newSecret

Blech Code

Mode Chart – Top Level

XDKBonus

Locked @ Locked
-

Unlock @ Unlock
-

Success @ Success
-

Programming @ Programming
-

faceDownOnTheTable(z, mlux)

1: faceDownOnTheTable(z, mlux) 2:

1: successful faceDownOnTheTable(z, mlux) 2:

1: wantReprogramming faceDownOnTheTable(z, mlux) 1:

-

24

XDKBonus

Locked

Blink

CountDown

true

1: steps <= 0

-

1:

-

pressedOne

-

Unlock

EnterSecret

pressedOne

1: not ok or idx == 8

-

-

DisplayOrientation

true
-

-

-

Success

pressedOne and not pressedTwo or pressedTwo and not pressedOne
-

Programming

EnterNewSecret

pressedOne and not pressedTwo
1: idx == 8

pressedTwo and not pressedOne

-

-

DisplayOrientation

true
-

-

-

faceDownOnTheTable(z, mlux)

1: faceDownOnTheTable(z, mlux) 2:

1: successful faceDownOnTheTable(z, mlux) 2:

1: wantReprogramming faceDownOnTheTable(z, mlux) 1:

-

Mode Chart – Expanded

25

Evaluation
• Implemented prototype based on VS Code and

Eclipse Layout Kernel (ELK)
• Asked Blech developers at Bosch to evaluate

⇒ Hierarchy flattening should be configurable
⇒ Knowledge of visual syntax (SCCharts) needed to take

full advantage of visualizations
⇒ Visualizations considered helpful, in particular for

discussions with people not familiar with code base

26

Take-Home Message
Presented approach to automatically extract mode diagrams
from Blech code

To apply this to YOUR favorite language, you must be able to …

1. Analyze programs written in your language
the standard part
like an ordinary compiler

2. Automatically synthesize graphical views
the non-standard part
but there are solutions to that as well – talk to us 🙂

That’s it – thanks!

27

